簡易檢索 / 詳目顯示

研究生: 謝旻潔
Hsieh, Min-Chieh
論文名稱: AI中介下的城市共創——以臺南綠園道為例的 Middle-out 參與流程再造取徑
AI as Mediator in Urban Co-Creation——A Middle-Out Approach to Participatory Process Reconfiguration in Tainan Parkway
指導教授: 鄭泰昇
Jeng, Tay-Sheng
劉舜仁
Liou, Shuenn-Ren
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 193
中文關鍵詞: 人工智慧AI作為媒介中介治理城市共創參與流程再造
外文關鍵詞: Artificial intelligence, AI as mediator, middle-out governance, urban co-creation, participatory process reconfiguration
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球城市轉型與人工智慧快速滲透的時代,城市設計正從形式性規劃邁向系統性治理的關鍵轉折。臺南正處於這樣的臨界點——鐵路地下化與綠園道工程的推進,不僅重構都市空間,更挑戰了既有的治理框架與公共參與模式。過去由政府主導的 Top-down 流程與社群推動的 Bottom-up 參與之間,長期存在制度縫隙與資訊落差,使城市設計難以真正回應地方需求。
    本研究提出 Middle-out 方法作為橋接策略,並引入人工智慧(AI)作為中介,嘗試建構一套能在政策、社群與專業之間動態協商、翻譯多重語言與價值的城市設計系統。
    AI 在此不再被視為自動化輔助工具,而是一種具有能動性的媒介(AI as Media)——能感知語意、生成影像並調解差異,成為參與過程中的協商代理。以臺南綠園道為案例,本研究透過兩項互補實驗檢視此理論架構:其一,「居民工作坊與訪談實驗」則作為 即時參與機制,透過影像生成與語言互動,觀察居民如何在同步的對話情境中藉由 AI 的回饋,將抽象經驗轉化為具象的空間偏好與需求;其二,「AI 平台實驗」整合政策資料、空間數據與居民意見,作為一種補償式的非即時參與機制,提供無法同步到場者的持續意見輸入,並使 AI 成為資訊透明化與初步共識形塑的中介。此過程亦重新界定設計專業者的角色,從單向決策者轉為介於 AI 與居民之間的詮釋者與轉譯者。
    進一步地,本研究以臺南綠園道作為驗證場域,透過情境建模、方案生成與利害關係人回饋,評估 Middle-out × AI 框架在資訊整合、跨部門協作與方案優化上的效能,並檢視其於不同規劃階段的操作可行性。研究成果為城市設計流程的重構提供初步實證與策略基礎,協助決策者與設計團隊在面對複雜多變的城市議題時,能兼顧效率、包容性與創新性,推動更具韌性與可持續性的城市治理模式。

    Urban design is undergoing a critical transition as cities confront infrastructural transformation, climate challenges, and increasing social complexity, often exposing institutional gaps between top-down planning and bottom-up civic participation. This study examines how artificial intelligence (AI) can function as a mediating mechanism within a Middle-out urban design approach, reframing participation as an adaptive and negotiated process rather than a fixed procedural stage.
    Using the Tainan Parkway project, developed through the undergrounding of the Tainan Railway, as a case study, this research employs two complementary AI-assisted participation settings: real-time workshops and interviews using generative visualizations and semantic feedback to translate lived experiences into spatial preferences, and a non-real-time online platform integrating policy documents, spatial data, and citizen inputs.
    The findings indicate that AI-mediated processes enhance knowledge translation, facilitate cross-scale dialogue, and operate as a negotiation interface that supports iterative alignment among heterogeneous stakeholders. The study concludes that AI can operate as an effective mediator, reframing urban design as an adaptive participatory system rather than a fixed design outcome.

    摘要 i Thesis/Dissertation Title ii 誌謝 vi 目錄 vii 表目錄 xiv 圖目錄 xv 第1章 緒論 1 1.1 研究背景:都市設計與 AI 介入契機 1 1.1.1 大型公共空間規劃的時程限制與參與困境 1 1.1.2 從「能動性」到「賦能」 2 1.1.3 從控制到共創 3 1.1.4 從形式語彙到知識轉譯 3 1.1.5 AI 如何進行賦能? 3 1.2 研究動機與問題意識:制度縫隙與參與困境 4 1.3 研究目的與核心問題 5 1.4 研究範圍與限制:臺南綠園道案例 5 1.4.1 研究範圍 5 1.4.2 研究限制 6 1.5 研究方法與架構 7 1.5.1 研究設計邏輯 8 1.5.2 研究方法架構 9 第2章 文獻回顧與理論基礎 10 2.1 城市設計方法論之演進 10 2.1.1 從現代主義到後現代的規劃典範轉移 10 2.1.2 Top-down 與 Bottom-up 方法的發展與限制 12 2.1.3 Middle-out 作為第三條路的理論基礎 12 2.2 AI與空間推理技術的發展脈絡 13 2.2.1 人工智慧技術革新與空間認知的提升 13 2.2.2 模型類型與空間問題對應性 13 2.2.3 AI 感知能力與空間理解的模態化分析 14 2.3 AI 與城市設計的互構:從工具到媒介 15 2.3.1 人工智慧在城市規劃中的應用發展 15 2.3.2 AI 賦能與 AI 替代的差異 15 2.3.3 數位工具對參與式設計的影響 16 2.4 能動性(Agency)與中介理論(Mediation Theory)之探討 17 2.4.1 居民能動性(Agency)的概念與意涵 17 2.4.2 賦能(Empowerment)在社區營造中的實踐 18 2.4.3 認知賦能與行動賦能的循環 18 2.4.4 AI 民主、數位民主與設計參與的再定義 19 2.5 修補,而非複製:AI 中介下的 Middle-out 參與方法論 21 2.5.1.1 現有 Middle-out 參與機制的結構性限制 21 2.5.2 為何不能「直接複製」既有 Middle-out? 23 2.5.3 社會性修補 × 技術性增能:雙軌方法論 23 2.5.4 本研究的設計方法立場:AI-mediated Middle-out 24 2.6 國際線性公共空間案例回顧 24 2.6.1 紐約 High Line 的參與式設計經驗 24 2.6.2 其他線性公共空間的社區參與模式 27 2.6.3 對台南綠園道的借鑑與啟示 32 2.7 AI 參與研究的資料偏誤與 Triangulation 必要性 33 2.8 理論綜述與本研究定位 34 2.8.1 理論整合與核心觀點 34 2.8.2 本研究的理論定位 34 2.8.3 本研究的理論貢獻 35 2.8.4 本研究的理論架構圖 36 第3章 研究假設與分析架構 37 3.1 研究設計的理論定位 37 3.1.1 從傳統方法論到 Middle-out 治理 37 3.1.2 Middle-out 的理論定位與操作邏輯 37 3.1.3 數位民主的轉型、AI 中介與實踐的反思 39 3.2 AI 作為制度與社會中介的假設模型 41 3.2.1 中介平台的角色與功能設計 41 3.2.2 多層次利害關係者整合機制 42 3.2.3 AI 作為認知中介 43 3.3 參與機制的雙軌架構 44 3.3.1 Unreal-time Participation:非即時參與/補償式軌道 44 3.3.2 Real-time Participation:即時互動/語意協商場域 45 3.4 AI 轉譯系統:從 Sight → Insight → Action 45 3.4.1 Sight|感知層:主觀經驗的外顯化 46 3.4.2 Insight|詮釋層:語意拆解與意義生成 46 3.4.3 Action|行動層:制度化轉譯與策略生成 46 3.4.4 與 Middle-out 架構的對應關係 46 3.5 系統思維與因果循環圖之應用 47 3.5.1 信任—資料—行動的強化與抑制循環 47 3.5.2 參與回饋的語意分析與轉譯 48 3.5.3 研究架構總結 49 3.6 AI-Mediated Co-Creation Framework:中介式協作的統整架構 49 第4章 案例背景:臺南綠園道的治理困境與研究定位 51 4.1 臺南鐵路地下化與綠園道計畫沿革 51 4.1.1 計畫緣起與都市脈絡 51 4.1.2 分段發展與場域特色 52 4.2 治理架構與多方參與者分析 54 4.2.1 Top-down 與 Bottom-up 的治理縫隙:跨層級決策流程分析 54 4.2.2 Middle-out 介面:都市設計審議制度、專業者與協作機制的角色 54 4.2.3 多元行動者在 Middle-out 架構下的互動模式 54 4.3 問題診斷:現有參與機制中的結構性矛盾 55 4.3.1 時程壓縮下的參與品質困境 55 4.3.2 專業知識與在地經驗的轉譯落差 56 4.3.3 AI協作介入的策略性機會與人際信任的再詮釋 56 4.4 AI 介入的策略性機會與研究定位 58 4.4.1 從技術補償到關係中介 58 4.4.2 本研究的介入策略與實驗定位 59 4.5 小結:從問題診斷到研究介入 59 第5章 實驗一:即時參與——AI 協作的工作坊與訪談機制 60 5.1 實驗設計與方法概述 60 5.1.1 即時參與實驗的研究設計前提與行動者分析 60 5.1.2 實驗設計與方法概述 62 5.2 北段:多人工作坊 65 5.2.1 實驗設計與流程 65 5.2.2 AI生成與回饋過程分析 66 5.2.3 初步發現與反思 70 5.3 南段個別訪談 A:居民訪談 73 5.3.1 實驗設計與流程 73 5.3.2 AI生成與回饋過程分析 73 5.3.3 初步發現與反思 77 5.4 南段個別訪談 B:居民訪談 79 5.4.1 實驗設計與流程 79 5.4.2 AI生成與回饋過程分析 79 5.4.3 初步發現與反思 82 5.5 南段大型機構訪談:醫院訪談 85 5.5.1 實驗設計與流程 85 5.5.2 AI生成與回饋過程分析 85 5.5.3 初步發現與反思 89 5.6 綜合比較分析 90 5.7 反思:研究限制下的觀察、信任生成與未來公共參與框架示範 90 5.7.1 即時參與作為信任生成的關鍵條件 91 5.7.2 個別訪談中的思考固著與公共討論的必要性 91 5.7.3 指向未來的可擴展參與架構 92 5.7.4 AI 中介角色的再定位 93 第6章 實驗二:非即時/補償式參與——AI 平台的整合與回饋機制 94 6.1 平台設計概念與技術架構 95 6.1.1 研究目的與假設 95 6.1.2 實驗設計 95 6.2 政策語彙、空間資料與居民輸入的整合方式 97 6.2.1 資料來源與編碼方法 97 6.2.2 資料編碼類別 98 6.3 技術架構:RAG × NLP 的資料轉譯機制 99 6.3.1 架構邏輯 100 6.3.2 知識庫設計 100 6.3.3 運作流程 100 6.3.4 中介意涵 101 6.4 初步發現與反思 101 6.4.1 初步結果分析 101 6.4.2 反思與限制 102 6.4.3 後續行動建議 103 6.5 從被動參與到主動協作:方法轉向的必要性 104 第7章 Middle-out流程再構 105 7.1 人—AI—制度三方互動模型 105 7.2 因果循環圖(Causal Loop Diagram)分析 107 7.3 Middle-out 參與機制的操作原則與調節邏輯 108 7.3.1 Middle-out 參與機制的操作性定義 108 7.3.2 強化與平衡之間:Middle-out 調節邏輯 110 7.4 AI 賦能之中介治理模型建構 112 7.5 Semantic–Visual–Negotiation Pipeline與 Middle-out 流程的整合 114 第8章 設計示範與策略延伸 116 8.1 以公民語言共編的社區想像—— AI 中介下的設計轉譯機制 116 8.2 系統演化與策略延伸:AI 再生與城市共創循環 131 8.3 綠園道以外的可轉移性(Transferability)與其他城市的潛在應用 132 8.4 小結:從示範到制度的中介轉向 133 第9章 結論與展望:臺南新篇章 134 9.1 研究成果與主要發現 134 9.2 AI 作為媒介的城市設計新典範 134 9.2.1 AI-Empowered Citizen Creation Ecology:城市共創的系統性重構 134 9.2.2 AI 作為媒介的城市設計新典範:角色、知識與治理邏輯的轉變 136 9.3 Middle-out 模型的制度意涵與應用潛力 136 9.4 AI 與空間智能的前沿:專業角色的再定位 137 9.5 本研究之開放性資料、倫理立場與未來 AI-人類協作的規範建議 138 9.6 研究限制與未來發展建議 139 參考文獻 141 附錄A 北段工作坊紀錄 152 A.1訪談流程與提問重點 152 A.1.1訪談背景與研究目的 152 A.2 訪查情形紀要 152 A.3 語料編碼與挖掘隱性需求 154 附錄B 南段個別訪談1紀錄 156 B.1訪談流程與提問重點 156 B.1.1訪談背景與研究目的 156 B.2 訪查情形紀要 157 B.3 語料編碼與挖掘隱性需求 158 附錄C 南段個別訪談2紀錄 161 C.1訪談流程與提問重點 161 C.1.1訪談背景與研究目的 161 C.2 訪查情形紀要 162 C.3 語料編碼與挖掘隱性需求 163 附錄D 新樓醫院視角之臺南綠園道需求探索訪談紀要 166 D.1訪談流程與內容聚焦 166 D.1.1訪談流程與內容聚焦 166 D.1.2錄音同意與資料使用 166 D.2 訪查情形紀要 166 D.2.1現況挑戰與衝擊 167 D.2.2單位溝通與協調問題 167 D.2.3對綠園道規劃的期許與建議 168 D.3 語料編碼與挖掘隱性需求 168 附錄 E 研究延伸呈現:論文口試影像與展示版面 171

    Aigrain, P., Chan, L., Guédon, J.-C., Willinsky, J., & Benkler, Y. (2008). The wealth of networks. In: SAGE Publications Sage UK: London, England.
    Aitken, M. (2010). A three-dimensional view of public participation in Scottish land-use planning: Empowerment or social control? Planning Theory, 9(3), 248–264.
    Akama, Y. (2015). Being awake to Ma: designing in between-ness as a way of becoming with. CoDesign, 11(3-4), 262–274.
    Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36(2), 358–367.
    Aragón, P., Kaltenbrunner, A., Calleja-López, A., Pereira, A., Monterde, A., Barandiaran, X. E., & Gómez, V. (2017). Deliberative platform design: The case study of the online discussions in Decidim Barcelona. International conference on social informatics,
    Aravena, A. (2012). Elemental: Incremental housing and participatory design manual. Hatje/Cantz.
    Aravena, A. (2014). My architectural philosophy? Bring the community into the process, TED Conferences. https://www.ted.com/talks/alejandro_aravena_my_architectural_philosophy_bring_the_community_into_the_process
    Aravena, A., & Aravena, A. (2014). My architectural philosophy? Bring the community into the process. TED Talks.
    Arnstein, S. R. (1969). A ladder of citizen participation. Journal of the American Institute of planners, 35(4), 216–224.
    Ascher, K., & Uffer, S. (2015). The high line effect. Global Interchanges: Resurgence of the Skyscraper City, 243–228.
    Atzori, M. (2015). Blockchain technology and decentralized governance: Is the state still necessary? Available at SSRN 2709713.
    Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
    Bai, X., McAllister, R. R., Beaty, R. M., & Taylor, B. (2010). Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Current opinion in environmental sustainability, 2(3), 129–135.
    Barber, B. R. (2003). Strong democracy: Participatory politics for a new age. Univ of California Press.
    Barthélemy, M. (2011). Spatial networks. Physics reports, 499(1-3), 1–101.
    Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3-6.
    Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., & Faulkner, R. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.
    Boyco, M., & Robinson, P. AI in Participatory Planning.
    Byahut, S., Ghosh, S., & Masilela, C. (2020). Urban Transformation for Sustainable Growth and Smart Living: The Case of the Atlanta Beltline. In Smart Living for Smart Cities: Community Study, Ways and Means (pp. 73–100). Springer.
    Callon, M. (1984). Some elements of a sociology of translation: domestication of the scallops and the fishermen of St Brieuc Bay. The sociological review, 32(1_suppl), 196-233.
    Castells, M. (2015). Networks of outrage and hope: Social movements in the Internet age. John Wiley & Sons.
    Chadwick, A., & May, C. (2003). Interaction between States and Citizens in the Age of the Internet:“e‐Government” in the United States, Britain, and the European Union. Governance, 16(2), 271–300.
    Cole, R. J. (2020). Navigating climate change: Rethinking the role of buildings. Sustainability, 12(22), 9527.
    Colther, C., & Doussoulin, J. P. (2024). Artificial intelligence: Driving force in the evolution of human knowledge. Journal of Innovation & Knowledge, 9(4), 100625.
    Cornwall, A. (2008). Unpacking ‘Participation’: models, meanings and practices. Community development journal, 43(3), 269–283.
    Costa, C. J., Aparicio, M., Aparicio, S., & Aparicio, J. T. (2024). The democratization of artificial intelligence: Theoretical framework. Applied sciences, 14(18), 8236.
    Cropf, R. A. (2008). Benkler, Y.(2006). The Wealth of Networks: How Social Production Transforms Markets and Freedom. New Haven and London: Yale University Press. 528 pp. $40.00 (papercloth). Social Science Computer Review, 26(2), 259–261.
    Dalsgaard, P. (2025). Thinking through Prompting: Cognitive Mediation in Human–AI Interaction Proceedings of the 36th Annual Conference of the European Association of Cognitive Ergonomics, https://doi.org/10.1145/3746175.3747192
    De Lange, M., & De Waal, M. (2017). Owning the city: New media and citizen engagement in urban design. In Urban land use (pp. 109–130). Apple Academic Press.
    Delgado, F., Yang, S., Madaio, M., & Yang, Q. (2023). The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, Boston, MA, USA. https://doi.org/10.1145/3617694.3623261
    DiMaggio, P., Hargittai, E., Celeste, C., & Shafer, S. (2004). Digital inequality: From unequal access to differentiated use. Social inequality, 355–400.
    Du, J., Ye, X., Jankowski, P., Sanchez, T. W., & Mai, G. (2024). Artificial intelligence enabled participatory planning: a review. International Journal of Urban Sciences, 28(2), 183–210.
    Duerinckx, A., Veeckman, C., Verstraelen, K., Singh, N., Van Laer, J., Vaes, M., Vandooren, C., & Duysburgh, P. (2024). Co-creating Artificial Intelligence: Designing and Enhancing Democratic AI Solutions Through Citizen Science. Citizen Science: Theory and Practice, 9(1).
    Eizenberg, E. (2019). Patterns of self-organization in the context of urban planning: Reconsidering venues of participation. Planning Theory, 18(1), 40–57.
    Emirbayer, M., & Mische, A. (1998). What is agency? American journal of sociology, 103(4), 962–1023.
    Falco, E., & Kleinhans, R. (2019). Digital participatory platforms for co-production in urban development: A systematic review. Crowdsourcing: Concepts, methodologies, tools, and applications, 663–690.
    Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and machines, 28(4), 689-707.
    Foth, M., Choi, J. H.-j., & Satchell, C. (2011). Urban informatics. Proceedings of the ACM 2011 conference on Computer supported cooperative work.
    Fung, A., & Wright, E. O. (2001). Deepening democracy: Innovations in empowered participatory governance. Politics & society, 29(1), 5-41.
    Gattupalli, A. (2024). The High Line Effect: Transforming Abandoned Infrastructure in the United States. https://www.archdaily.com/1017239/the-high-line-effect-transforming-abandoned-infrastructure-in-the-united-states
    Giddens, A. (1984). The constitution of society: Outline of the theory of structuration. Univ of California Press.
    Gilman, M. E. (2023). Democratizing AI: Principles for meaningful public participation. Data & Society.
    Gobster, P. H., Sachdeva, S., & Lindsey, G. (2017). Up on the 606: Understanding the use of a new elevated pedestrian and bicycle trail in Chicago, Illinois. Transportation Research Record, 2644(1), 83–91.
    Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). MIT press Cambridge.
    Gorden, C. (1980). Power/Knowledge. Selected interviews and other writings 1972-1977. Harvester Wheatsheaf, Hertfordshire.
    Gosselin, L., & Gauquelin, M. (2025). Rethinking Knowledge Cumulation: Foregrounding Epistemic Justice in Environmental Governance Research. Environmental Policy and Governance.
    Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267–297.
    Gupta, A., Savarese, S., Ganguli, S., & Fei-Fei, L. (2021). Embodied intelligence via learning and evolution. Nature communications, 12(1), 5721.
    Habermas, J. (1985). The theory of communicative action: Volume 1: Reason and the rationalization of society (Vol. 1). Beacon press.
    Healey, P. (2020). Collaborative planning: Shaping places in fragmented societies. Bloomsbury Publishing.
    The High Line. https://www.thehighline.org/
    Hsiao, Y.-T., Lin, S.-Y., Tang, A., Narayanan, D., & Sarahe, C. (2018). vTaiwan: An empirical study of open consultation process in Taiwan. Taiwan: Center for Open Science.
    Hsu, Y.-C., Verma, H., Mauri, A., Nourbakhsh, I., & Bozzon, A. (2022). Empowering local communities using artificial intelligence. Patterns, 3(3).
    Innes, J. E., & Booher, D. E. (2010). Planning with complexity: An introduction to collaborative rationality for public policy. Routledge.
    Janda, K. B., & Parag, Y. (2013). A middle-out approach for improving energy performance in buildings. Building Research & Information, 41(1), 39–50.
    Janssen, M., & Kuk, G. (2016). Big and open linked data (BOLD) in research, policy, and practice. Journal of Organizational Computing and Electronic Commerce, 26(1-2), 3–13.
    Jessop, B. (2011). Metagovernance. In The SAGE handbook of governance (pp. 106–123). SAGE Publications Ltd.
    Kim, J., Detrick, R., Yu, S., Song, Y., Bol, L., & Li, N. (2025). Socially shared regulation of learning and artificial intelligence: Opportunities to support socially shared regulation. Education and Information Technologies, 1–39.
    Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 1–14.
    Kitchin, R., & Dodge, M. (2014). Code/space: Software and everyday life. Mit Press.
    Landemore, H. (2020). Open democracy: Reinventing popular rule for the twenty-first century.
    Larson, D. A. (2010). Artificial Intelligence: Robots, avatars, and the demise of the human mediator. Ohio St. J. on Disp. Resol., 25, 105.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.
    Lee, S. H., Velez, J. A., & Noh, D.-w. (2025). Beyond Prompt Engineering: Exploring Collaborative Dialogue with Generative AI for Problem-Solving. Cyberpsychology, Behavior, and Social Networking.
    Lindblom, C. (2018). The science of “muddling through”. In Classic readings in urban planning (pp. 31–40). Routledge.
    Lindblom, C. E. (1979). Still muddling, not yet through. Public administration review, 39(6), 517–526.
    Lindsey, G., Qi, Y., Gobster, P. H., & Sachdeva, S. (2019). The 606 at three: Trends in use of Chicago's elevated rail-trail. Proceedings of the Fábos Conference on Landscape and Greenway Planning. 6 (37). 14p.,
    Lund, V. The reciprocal development of the object of common space and the emergence of the collective agency in residents' workshops.
    Manzini, E. (2015). Design, when everybody designs: An introduction to design for social innovation. MIT press.
    Morozov, E. (2013). To save everything, click here: The folly of technological solutionism. PublicAffairs.
    Mortaheb, R., & Jankowski, P. (2023). Smart city re-imagined: City planning and GeoAI in the age of big data. Journal of Urban Management, 12(1), 4–15.
    Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review, 56(4), 3005–3054.
    Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D., & Benjamin, D. (2017). Project discover: An application of generative design for architectural space planning. Proceedings of the Symposium on Simulation for Architecture and Urban Design,
    Noveck, B. S. (2015). Smart citizens, smarter state: The technologies of expertise and the future of governing. Harvard University Press.
    OECD (2024), “Framework for Anticipatory Governance of Emerging Technologies”, OECD Science, Technology and Industry Policy Papers, No. 165, OECD Publishing, Paris, https://doi.org/10.1787/0248ead5-en.
    O'neil, C. (2017). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.
    O’Brien, D. T., Sampson, R. J., & Winship, C. (2015). Ecometrics in the age of big data: Measuring and assessing “broken windows” using large-scale administrative records. Sociological Methodology, 45(1), 101–147.
    Parag, Y., & Janda, K. B. (2014). More than filler: Middle actors and socio-technical change in the energy system from the “middle-out”. Energy Research & Social Science, 3, 102–112.
    Pateman, C. (1975). Participation and democratic theory. Cambridge University Press.
    Perkins, D. D., & Zimmerman, M. A. (1995). Empowerment theory, research, and application. American journal of community psychology, 23(5), 569–579.
    Purkarthofer, E., & Stead, D. (2023). Agency and structure in urban and regional planning: An illustrative overview and future research agenda. Journal of Planning Literature, 38(4), 571–587.
    Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of management review, 46(1), 192-210.
    Rappaport, J. (1987). Terms of empowerment/exemplars of prevention: Toward a theory for community psychology. American journal of community psychology, 15(2), 121–148.
    Riva, G. (2025). Invisible Architectures of Thought: Toward a New Science of AI as Cognitive Infrastructure. arXiv preprint arXiv:2507.22893.
    Rossi, A., & Lenzini, G. (2020). Transparency by design in data-informed research: A collection of information design patterns. Computer Law & Security Review, 37, 105402.
    Sanoff, H. (1999). Community participation methods in design and planning. John Wiley & Sons.
    Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5-18.
    Sachs, M., & Parycek, P. (2010). Open government-information flow in Web 2.0. Euro. J. ePractice, 9, 1–70.
    Sanchez Munoz, J. A., Flores-Eraña, G., Silva-Campos, J. M., Chavira-Quintero, R., & Olais-Govea, J. M. (2025). Generative AI as a Cognitive Mediator: A Critical-
    Constructivist Inquiry into Computational Thinking in Secondary Education. Frontiers in Education,
    Sarica, S., Han, J., & Luo, J. (2023). Design representation as semantic networks. Computers in Industry, 144, 103791.
    Seoul Metropolitan Government. (2023). Democracy Seoul Annual Report 2023.
    Seger, E., Ovadya, A., Siddarth, D., Garfinkel, B., & Dafoe, A. (2023). Democratising AI: Multiple meanings, goals, and methods. Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society,
    Schiefer, J., Edelsbrunner, P. A., Bernholt, A., Kampa, N., & Nehring, A. (2022). Epistemic beliefs in science—a systematic integration of evidence from multiple studies. Educational Psychology Review, 34(3), 1541–1575.
    Shin, B., Floch, J., Rask, M., Baeck, P., Edgar, C., Berditchevskaia, A., Mesure, P., & Branlat, M. (2024). A systematic analysis of digital tools for citizen participation. Government Information Quarterly, 41(3), 101954.
    Shneiderman, B. (2020). Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 10(4), 1-31.
    Shneiderman, B. (2022). Human-centered AI. Oxford University Press.
    Sousa, I. A. d. N., Machado, J., & Vaz, J. C. (2025). Generative AI as a catalyst for democratic Innovation: Enhancing citizen engagement in participatory budgeting. arXiv preprint arXiv:2509.19497.
    Star, S. L., & Griesemer, J. R. (1989). Institutional ecology,translations' and boundary objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social studies of science, 19(3), 387-420.
    Tang, A., Horton, C., Miller, K., Eskelinen, T., & Pereira, J. C. (2019). Digital Social Innovation: Civic Participation and Accountability in Taiwan. g0v.tw.
    Taylor, L. (2023). Can AI governance be progressive? Group interests, group privacy and abnormal justice. In Handbook on the politics and governance of big data and artificial intelligence (pp. 19–40). Edward Elgar Publishing.
    Taylor, R. R., Murphy, J. W., Hoston, W. T., & Senkaiahliyan, S. (2025). Democratizing AI in public administration: improving equity through maximum feasible participation. AI & society, 40(5), 3653–3662.
    Van Dijck, J., Poell, T., & De Waal, M. (2018). The platform society: Public values in a connective world. Oxford university press.
    Verbeek, P.-P. (2024). Moralizing technology: Understanding and designing the morality of things. University of Chicago press.
    Vogt, L. (2023). The FAIREr Guiding Principles: Organizing data and metadata into semantically meaningful types of FAIR Digital Objects to increase their cognitive interoperability and human explorability. arXiv preprint arXiv:2301.04202.
    Warren, J. (2014). The High Line: a'suburban space'for an urban public University of Pittsburgh].
    Warso, Z., Tarkowski, A., Gimpel, L., Skowron, A., Poli, E., Küsters, A., Pachouri, A., Raj, A., & Singh, H. (2024). Democratic Governance of AI Systems and Datasets.
    Yang, J., Yang, S., Gupta, A. W., Han, R., Fei-Fei, L., & Xie, S. (2025). Thinking in space: How multimodal large language models see, remember, and recall spaces. Proceedings of the Computer Vision and Pattern Recognition Conference,
    Yin, B., Wang, Q., Zhang, P., Zhang, J., Wang, K., Wang, Z., Zhang, J., Chandrasegaran, K., Liu, H., & Krishna, R. (2025). Spatial mental modeling from limited views. Structural Priors for Vision Workshop at ICCV'25,
    Yu, H., & Robinson, D. G. (2011). The new ambiguity of open government. UCLA L. Rev. Discourse, 59, 178.
    Zhang, H., Huang, J., Lin, L., & Xiang, L. (2025). A Bibliometric Review on Applying Spatial Perception Technologies to Make Cities Livable. Landscape Architecture Frontiers, 13(4).
    丁玉珍(2023)。公共治理與人工智慧的交引纏繞-行動者網絡理論分析途徑。國立臺灣大學政治學研究所博士論文。
    邱慧珠(2019)。公民參與文化資產保存審議之研究-以民主立方體為分析取徑。國立臺灣大學政治學研究所碩士論文。
    陳怡君(2016)。我國公共政策網路參與機制之研究- vTaiwan及Join平臺之比較分析。國立臺灣大學政治學研究所碩士論文。
    交通部鐵道局(2025)。臺南市區鐵路地下化計畫介紹。交通部鐵道局。
    國家發展委員會(2023)。公共政策網路參與平台年度報告。
    臺南市文化資產管理處(2024)。臺南市鐵路地下化綠園道設計原則擬定案:設計原則報告書。衍生工程顧問有限公司。
    臺南市政府都市發展局(2016)。配合臺南市區鐵路地下化計畫之都市計畫變更書(主要計畫及細部計畫)。臺南市政府。
    臺南市政府工務局(2025)。臺南市鐵路地下化園道開闢工程委託設計及監造北段說明會簡報(綠園道北段:柴頭港溪-小東路)[簡報]。臺南市北區光武社區活動中心。
    臺南市政府工務局(2025)。臺南市鐵路地下化園道開闢工程委託設計及監造南段說明會簡報(綠園道南段:民族路-大同路三段121巷)[簡報]。臺南市東門圍下里聯合活動中心。
    臺南市政府工務局(2025)。臺南市鐵路地下化園道開闢工程委託設計及監造北段第二場說明會簡報(綠園道北段:柴頭港溪-小東路)[簡報]。臺南市北區大仁社區活動中心。

    QR CODE