| 研究生: |
劉家瑋 Liu, Chia-Wei |
|---|---|
| 論文名稱: |
高溫質子交換膜燃料電池用聚苯基喹惡啉之合成與性質研究 Synthesis and properties of polyphenylquinoxalines for high-temperature proton exchange membrane fuel cells |
| 指導教授: |
許聯崇
Hsu, Lien-chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 一步驟合成 、聚苯基喹惡啉 、摻雜磷酸 |
| 外文關鍵詞: | one-pot synthesis, polyphenlyquinoxaline, phosphoric acid doping |
| 相關次數: | 點閱:63 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究成功以benzyl 4-hydroxyphenyl ketone和1,2-diamino-4-fluorobenzene為反應物並利用1,4-diazabicyclo[2.2.2]octane作為觸媒,以一步驟合成出自聚合聚苯基喹惡啉之單體3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxaline和2-(4-hydroxyphenyl)-3-phenyl-6-fluoroquinoxaline,並利用此單體聚合成出含醚基的聚苯基喹惡啉(polyphenylquinoxaline,PPQ)。而此PPQ可溶於一般有機溶劑中方便加工成膜,在摻雜磷酸之後於高溫下可以獲得良好的質子導電度,可以做為高溫質子交換膜燃料電池之材料。研究中發現,相較於聚苯咪唑(polybenzimidazole,PBI)的系統,PPQ可以在較短的時間達到比PBI更好的摻雜程度,而相同的摻雜程度下,PPQ也有較佳的導電度,推測其原因是PPQ結構中可以摻雜以及傳導磷酸的位置較多所致。但由於PPQ在摻雜過程中會發生溶解的情形,造成機械性質大幅下降,使得PPQ的摻雜程度產生上限,故若要改善此情形未來可以藉由混摻或交聯的方式來提升PPQ薄膜對磷酸的溶解阻抗。
關鍵字 : 一步驟合成 ; 聚苯基喹惡啉 ; 摻雜磷酸
In this study, the one-pot synthesis of self-polymerizable quinoxaline monomer was developed. 3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxaline and 2-(4-hydroxyphenyl)-3-phenyl-6-fluoroquinoxalinemixture was synthesized from benzyl 4-hydroxyphenyl ketone and 1,2-diamino-4-fluorobenzene, catalyzed by 1,4-diazabicyclo[2.2.2]octane. Then, an ether-containing polyphenylquinoxaline(PPQ) was synthesized successfully from the monomer. The ether-containing PPQ is organosoluble, and has good proton conductivity at high temperature after doping with phosphoric acid. It is suitable to use in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Compared to polybenzimidazole (PBI), PPQ has a higher acid doping level at the same doping time, because the sites which can be doped with phosphoric acid in the PPQ’s molecular structure are more than PBI. However, the PPQ can be dissolved in high concentration phosphoric acid during the doping, and cause the decrease of mechanical properties. In the future study, the resistance to phosphoric acid of PPQ might be improved by copolymerization or crosslinking reaction.
Key words : one-pot synthesis ; polyphenlyquinoxaline ; phosphoric acid doping
1. J. T. Wang, J. S. Wainright, R. F. Savinell, and M. Litt, "A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte," Journal of Applied Electrochemistry, V. 26, No. 7, p. 751, 1996.
2. G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, "Electron and proton conducting polymers: recent developments and prospects," Electrochimica Acta, V. 45, No. 15–16, p. 2403, 2000.
3. M. Rikukawa, and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers," Progress in Polymer Science, V. 25, No. 10, p. 1463, 2000.
4. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, "Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell," Journal of Power Sources, V. 118, No. 1–2, p. 205, 2003.
5. V. V. Binsu, R. K. Nagarale, and V. K. Shahi, "Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: organic-inorganic hybrid proton-exchange membranes in aqueous media," Journal of Materials Chemistry, V. 15, No. 45, p. 4823, 2005.
6. 衣寶廉, "燃料電池-應用與原理," 五南圖書出版社, 2005.
7. K. Janowitz, M. Kah, and H. Wendt, "Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts," Electrochimica Acta, V. 45, No. 7, p. 1025, 1999.
8. X. H. Wang, Y. Chen, H. G. Pan, R. G. Xu, S. Q. Li, L. X. Chen, C. P. Chen, and Q. D. Wang, "Electrochemical properties of Ml(NiCoMnCu)5 used as an alkaline fuel cell anode," Journal of Alloys and Compounds, V. 293–295, No. 0, p. 833, 1999.
9. S. Dheenadayalan, R. H. Song, and D. R. Shin, "Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method," Journal of Power Sources, V. 107, No. 1, p. 98, 2002.
10. S. F. Corbin, and X. Qiao, "Development of Solid Oxide Fuel Cell Anodes Using Metal-Coated Pore-Forming Agents," Journal of the American Ceramic Society, V. 86, No. 3, p. 401, 2003.
11. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells," Progress in Polymer Science, V. 34, No. 5, p. 449, 2009
12. 蔡宗祐, “高溫質子交換膜燃料電池用之含醚基具苯咪唑/二氧化矽奈米複合材料合成與性質之研究,” 國立成功大學材料科學及工程學系, 碩士論文, 2013.
13. 林昇佃等著, "燃料電池:新世紀能源," 滄海書局, 2006.
14. 馬承九, "燃料電池札記," 三民書局, 2008.
15. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Journal of Membrane Science, V. 259, No. 1–2, p. 10, 2005.
16. Haci Bayram Erdem, “Synthesis and characterization of thermoplastic polyphenoxyquinoxalines,” Akron University, Doctor of Philosophy, 2008.
17. D. J. Klein, D. A. Modarelli, and F. W. Harries, “Synthesis of Poly(phenylquinoxaline)s via Self-Polymerizable Quinoxaline Monomers,” Macromol, V. 34, p. 2427, 2001.
18. Q. Chaorong, J. Huanfeng, H. Liangbin, C. Zhengwang, C. Huoji, “DABCO-Catalyzed Oxidation of Deoxybenzoins to Benzils with Air and One-Pot Synthesis of Quinoxalines,” Synthesis, No. 3, p387, 2011.
19. M. Hogarth, X. Glipa, and G. Britain, "High temperature membranes for solid polymer fuel cells," Harwell Laboratory, Oxfordshire, 2001.
20. K. D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors," Angewandte Chemie International Edition in English, V. 21, No. 3, p. 208, 1982.
21. J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte," Journal of The Electrochemical Society, V. 142, No. 7, p. L121, 1995.
22. H. Pu, W. H. Meyer, and G. Wegner, "Proton transport in polybenzimidazole blended with H3PO4 or H2SO4," Journal of Polymer Science Part B: Polymer Physics, V. 40, No. 7, p. 663, 2002.
23. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche, and M. Baldus, "Probing structure and dynamics in poly [2, 2'-(m-phenylene)-5, 5'-bibenzimidazole] fuel cells with magic-angle spinning NMR," The Journal of Physical Chemistry B, V. 108, No. 36, p. 13626, 2004.
24. M. V. Fuke, P. Adhyapak, U. Mulik, D. Amalnerkar, and R. Aiyer, "Electrical and humidity characterization of m-NA doped Au/PVA nanocomposites," Talanta, V. 78, No. 2, p. 590, 2009.
25. W. Münch, K.-D. Kreuer, W. Silvestri, J. Maier, and G. Seifert, "The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study," Solid State Ionics, V. 145, No. 1, p. 437, 2001.
26. H. Wu, W. Hou, J. Wang, L. Xiao, and Z. Jiang, "Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix," Journal of Power Sources, V. 195, No. 13, p. 4104, 2010.