| 研究生: |
許廣元 Hsu, Kuang-Yuan |
|---|---|
| 論文名稱: |
分子束磊晶成長三族氮化物奈米結構與物理性質之研究 Growth and physical properties of III-nitride nanostructures by molecular beam epitaxy |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 分子束磊晶 、三族氮化物 、氮化鋁 、氮化鎵 、奈米結構 |
| 外文關鍵詞: | molecular beam epitaxy, III-nitride, AlN, GaN, nanostructure |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用分子束磊晶成長氮化鋁(AlN)與氮化鎵(GaN)奈米材料微結構與物理性質之研究。利用掃瞄式電子顯微鏡(SEM)與原子力顯微鏡(AFM)觀察薄膜與奈米結構的表面型態。而利用穿透式電子顯微鏡(TEM)探討奈米材料之微結構與成長機制。Raman分析則提供了磊晶薄膜與奈米結構內受應力或應變之情形。並利用低溫螢光激發光譜(PL)與微觀光激發光譜(micro-PL)進行光學性質的研究。同時利用導電式原子力顯微鏡(conductive-AFM)進行區域性的導電性質研究。
本論文依研究主題可分為四個部分。首先,探討利用電漿輔助分子束磊晶以中斷成長法在Si (111)基板上成長AlN的表面型態與結構特性。利用中斷成長法可以改善AlN薄膜的表面平整度避免Al金屬液滴的生成。而當AlN成長於不平整的Si基板上時,AlN六角形島嶼會由於應力釋放與Ehrlich-Schwoebel (ES) barrier效應伴隨著產生。而在六角形島嶼下方的差排密度會相較於其他區域為低,這是由於島嶼的成長而導致差排相互抵銷。
第二部分,探討利用電漿輔助分子束磊晶以較大的V/III比成長AlN奈米錐於Si (111)基板上的表面型態、結構特性與成長機制。AlN奈米錐由{1-211}的傾斜面所建構的單晶結構並成長於具有N-polarity的凹洞狀缺陷上。而奈米錐的密度與大小可由成長條件控制。奈米錐的形成是由於在AlN成長初期當兩相鄰的晶粒相結合時會產生應變而導致差排的生成;此差排會改變接下來吸附原子的堆積順序。因此,AlN奈米錐相對於相鄰的matrix會具有不同的極性與較快的成長速率。
第三部分,利用電漿輔助分子束磊晶於Si (111)基板上成長GaN奈米柱,探討基板溫度與AlN緩衝層對奈米柱成長的影響。當GaN奈米柱直接成長於Si (111)基板時,增加基板溫度會使奈米柱的密度增加而尺寸變小。而當GaN奈米柱成長於AlN緩衝層上時,擴散誘發(diffusion induced)機制會對奈米柱的成長有較大的影響。奈米柱的密度可藉由基板溫度與AlN緩衝層所控制,而其直徑並不受到影響。GaN奈米柱可作為理想的基材應用於光電奈米元件中。
最後一個部分,利用電漿輔助分子束磊晶於氧化鋁(sapphire)基板上成長無缺陷的GaN表面奈米島嶼。表面奈米島嶼的成長與薄膜或奈米柱不同,需要特定的成長條件。基板經氮化後的預成長Ga金屬層,有助於改善表面奈米島嶼在形狀分佈上的均一性。且表面奈米島嶼的密度可由成長條件控制。利用導電式原子力顯微鏡發現奈米島嶼之非c-軸平面相對於c-軸平面是較導電的。GaN表面奈米島嶼是由於在成長初期的成核島嶼受到應力釋放與ES barrier效應等因素所形成的。
This dissertation explores the microstructure and physical properties of AlN and GaN nano-materials grown by plasma-assisted molecular beam epitaxy (MBE). The surface morphologies of the samples were analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The microstructures of the samples were characterized by transmission electron microscopy (TEM) to examine the formation mechanism of the III-nitride nano-materials. Raman scattering was employed to obtain information about stress and strain fields in epitaxial layers and nanostructures. The optical properties of the samples were investigated by combining low-temperature photoluminescence (PL) and micro-PL. Conductive-AFM was used to investigate local conductivity in the samples.
The main focus of this dissertation can be divided into four parts. First, the characteristics of the structure and morphology of AlN grown by a growth interruption method on Si (111) with plasma-assisted MBE is investigated. It is found that the growth interruption method would improve the surface flatness of the AlN layer without the formation of Al-droplets. The formation and persistence of the AlN hexagonal islands was enhanced by effective strain relaxation and Ehrlich-Schwoebel (ES) barrier effect of preexistent surface islands grown on the higher terraces of the Si substrate. The density of threading dislocations underneath the hexagonal islands is much less than elsewhere in the film, which is presumably due to dislocation annihilation during the island growth process.
In the second part, the characteristics of structure and morphology of AlN nanotips grown under higher V/III ratios on Si (111) with plasma-assisted MBE is herein investigated. We found that the AlN nanotips are single-crystalline with {1-211} inclined facets and embedded in pit-like defects of N-polarity. The density and size of the AlN nanotips can be controlled by the growth conditions. The AlN nanotips growth mechanism can be rationalized as the c-type dislocations generated between two adjacent grains, due to the formation of higher strain area in the first stages of growth. The c-type dislocation would reverse the stacking sequence of the following adatoms, leading to the AlN nanotips growth with inverse polarity and higher growth rate compared to the surrounding matrix.
In the third part, the growth and optical properties of GaN nanorods grown by plasma-assisted MBE are investigated as a function of growth temperature with and without the presence of a AlN buffer. When grown on bare-Si (111), an increase in the growth temperature leads to a reduction in nanorod diameter and an increase in density. The diffusion induced mechanism has a greater impact on enhancing the growth of nanorods on the AlN buffer surface as compared to on bare-Si (111). The GaN nanorod density is influenced by the presence of the AlN buffer, and can be controlled by varying growth temperature. The low density of GaN nanorods of 6.23×109 cm-2 is achieved without altering nanorod size. We also demonstrate that the GaN nanorods serve as ideal templates for optoelectronic nano-device applications.
In the last part, GaN surface nano-islands of high crystal quality, without any dislocations or other extended defects, are grown on a c-plane sapphire substrate by plasma-assisted MBE. Nano-island growth requires special conditions in terms of V/III ratio and substrate temperature, distinct from either film or nanorod growth. The insertion of a nitrided Ga layer can effectively improve the uniformity of the nanoisland shape. The density of the GaN surface islands can be controlled by the growth conditions. Conductive-AFM shows that the off-axis sidewall facets are more electrically active than those at the island center. The formation of the GaN surface islands is strongly induced by strain relaxation and the ES barrier effect of preexisting islands grown in the early growth stage. GaN surface islands are ideal templates for growing nano-devices.
1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).
2. S. Nakamura, M. Senoh, S. Nagahama, and N. Iwasa, Jpn. J. Appl. Phys. 35, L74 (1996).
3. 史光國, “GaN藍色發光及雷射二極體之發展現況”, 工業材料, 126, 154頁 (1997).
4. 廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學材料科學研究所, 碩士論文 (2002).
5. S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42, 427 (1983).
6. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota, Appl. Phys. Lett. 48, 353 (1986).
7. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
8. J. K. Sheu, Chin-Ciao Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, IEEE Electron Device Lett. 30, 225 (2009).
9. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Nano Lett. 9, 2183 (2009).
10. A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, Proc. of SPIE 6129, 612905 (2006).
11. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, Proc. of SPIE 6473, 64730T (2007).
12. T. Mitate, Y. Sonoda, and N. Kuwano, Phys. Stat. Sol. (a) 192, 383 (2002).
13. B. Gil, “Group III Nitride Semiconductor Compounds”, Oxford, New York (1998).
14.H. Morkoc, “Nitride Semiconductors and Devices”, Springer-Verlag, New York (2001).
15. J. R. Heffelfinger, D. L. Medlin, and K. F. McCarty, J. Appl. Phys. 85, 466 (1999).
16. P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, Phil. Mag. 80, 937 (2000).
17. K. Lorenz, M. Gonsalves, Wook Kim, V. Narayanan, and S. Mahajan, Appl. Phys. Lett. 77, 3391 (2000).
18. H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 747 (1998).
19. T. V. Cuong, H. S. Cheong, H. G. Kim, C. –H. Hong, E. K. Suh, H. K. Cho, and B. H. Kong, Appl. Phys. Lett. 90, 131107 (2007).
20. A. Bourret, A. Barski, J. L. Rouvière, G. Renaud, and A. Barbier, J. Appl. Phys. 83, 2003 (1998).
21. R. Liu, F. A. Ponce, A. Dadgar, and A. Krost, Appl. Phys. Lett. 83, 860 (2003).
22. D. Huang, M. A. Reshchikov, and H. Morkoc, Int. J. High Speed Electron. and Syst. 12, 79 (2002).
23. I. N. Stranski and L. Krastanow, Sitzungsberichte d. Akad. d. Wissenschaften in Wien, Abt. Iib, Band 146, 797 (1937).
24. V. Lebedev, K. Tonisch, F. Niebelschütz, V. Cimalla, D. Cengher, I. Cimalla, Ch. Mauder, S. Hauguth, and O. Ambacher, J. Appl. Phys. 101, 054906 (2007).
25. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, J. Appl. Phys. 89, 4886 (2001).
26. S. Raghavan, and J. M. Redwing, J. Appl. Phys. 96, 2995 (2004).
27 J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz, MRS Bulletin 27, 19 (2002).
28. G. B. Stephenson, J. A. Eastman, C. Thompson, O. Auciello, L. J. Thompson, A. Munkholm, P. Fini, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 74, 3326 (1998).
29. G. Koblmueller, R. Averbeck, L. Geelhaar, H. Riechert, W. Hösler, and P. Pongratz, J. Appl. Phys. 93, 9591 (2003).
30 B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, J. Appl. Phys. 88, 1855 (2000).
31. E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 82, 5472 (1997).
32. L. Sugiura, J. Appl. Phys. 81, 1633 (1997).
33. L. Lu, Z. Y. Gao, B. Shen, F. J. Xu, S. Huang, Z. L. Miao, Y. Hao, Z. J. Yang, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, J. Appl. Phys. 104, 123525 (2008).
34. V. Narayanan, K. Lorenz, W. Kim, and S. Mahajan, Appl. Phys. Lett. 78, 1544 (2001).
35. J. Bai, M. Dudley, W. H. Sun, and M. Asif Khan, Appl. Phys. Lett. 88, 051903 (2006).
36. Lin Zhou, David J. Smith, D. F. Storm, D. S. Katzer, S. C. Binari, and B. V. Shanabrook, Appl. Phys. Lett. 88, 011916 (2006).
37. H. Klapper, Mater. Chem. Phys. 66, 101 (2000).
38. H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, Appl. Phys. Lett. 90, 171917 (2007).
39. J. S. Ha, H. J. Lee, S. W. Lee, H. J. Lee, S. H. Lee, H. Goto, M. W. Cho, T. Yao, S. –K. Hong, R. Toba, J. W. Lee, and J. Y. Lee, Appl. Phys. Lett. 92, 091906 (2008).
40. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008).
41. M. Hijikuro, N. Kuwano, M. Takeuchi, and Y. Aoyagi, Phys. Stat. Sol. (c) 3, 1832 (2006).
42. F. Liu, R. Collazo, S. Mita, Z. Sitar, G. Duscher, Stephen J. Pennycook, Appl. Phys. Lett. 91, 203115 (2007).
43. X. Wang and A. Yoshikawa, Prog. Cryst. Growth Charact. Mater. 48/49, 42 (2004).
44. D. H. Lim, K. Xu, S. Arima, A. Yoshikawa, and K. Takahashi, J. Appl. Phys. 91, 6461 (2002).
45. Q. K. Xue, Q. Z. Xue, S. Kuwano, T. Sakurai, T. Ohno, I. S. T. Tsong, X. G. Qiu, Y. Segawa, Thin Solid films 367, 149 (2000).
46. O. Takahashi, T. Nakayama, R. Souda, and F. Hasegawa, Phys. Status Solidi (b) 228, 529 (2001).
47. A. M. Sánchez, F. J. Pacheco, S. I. Molina, P. Ruterana, F. Calle, T. A. Palacios, M.A. Sánchez- García, E. Calleja, R. García, Mater. Sci. Eng. B 93, 181 (2002).
48. K. Yamaguchi, H. Tomioka, T. Sato, R. Souda, T. Suemasu, F. Hasegawa, Jpn. J. Appl. Phys. Part 2 43, L151 (2004).
49 J. Jasinski, Z. Liliental-Weber, Q. S. Paduano, and D. W. Weyburne, Appl. Phys. Lett. 83, 2811 (2003).
50. L. T. Romano, J. E. Northrup, and M. A. O’Keefe, Appl. Phys. Lett. 69, 2394 (1996).
51. P. Vennéguès, M. Benaissa, B. Beaumont, E. Feltin, P. De Mierry, S. Dalmasso, M. Leroux, and P. Gibart, Appl. Phys. Lett. 77, 880 (2000).
52. John E. Northrup, Appl. Phys. Lett. 82, 2278 (2003).
53. G. P. Dimitrakopulos, Ph. Komninou, J. Kioseoglou, Th. Kehagias, E. Sarigiannidou, A. Georgakilas, G. Nouet, and Th. Karakostas, Phys. Rev. B 64, 245325 (2001).
54. J. Kioseoglou, G. P. Dimitrakopulos, Ph. Komninou, H. M. Polatoglou, A. Serra, A. Béré, G. Nouet, and Th. Karakostas, Phys. Rev. B 70, 115331 (2004).
55. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tasi. L. C. Chen, and K. H. Chen, Nano Lett. 4, 471 (2004).
56. S. E. Wu, C. P. Liu, T. H. Hsueh, H. C. Chung, C. C. Wang, and C. Y. Wang, Nanotechnology, 18 445301 (2007).
57. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, Nano Lett. 3, 1063 (2003).
58. H. M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater. 15, 567 (2003).
59. S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
60. P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, and T. Sands, Nano Lett. 5, 1847 (2003).
61. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
62. V. Ruth, J. P. Hirth, J. Chem. Phys. 41, 3139 (1964).
63. V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 205325 (2005).
64. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J-C Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).
65. E. Calleja, J. Ristić, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Stat. Sol (b) 8, 2816 (2007).
66. C. L. Hsiao, L. W. Tu, T. W. Chi, H. W. Seo, Q. Y. Chen, and W. K. Chu, J. Vac. Sci. Technol. B 24, 845 (2006).
67. R. Songmuang, O. Landré, and B. Daudin, Appl. Phys. Lett. 91, 251902 (2007).
68. S. Ishizawa, A. Kikuchi, and K. Kishino, Phys. Stat. Sol. (c) 5, 1879 (2008).
69. S. Ishizawa, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 015006 (2008).
70. A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, Proc. of SPIE 6129, 612905 (2006).
71. H. Harima, J. Phys.: Condens. Matter 14, R967 (2002).
72. I. Ahmad, M. Holtz, N. N. Faleev, and H. Temkin, J. Appl. Phys. 95, 1692 (2004).
73. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grutzmacher, and H. Luth, J. Appl. Lett. 105, 123707 (2009).
74. M. Park, J. J. Cuomo, B. J. Rodriguez, W. –C. Yang, and R. J. Nemanich, J. Appl. Phys. 93, 9542 (2003).
75. 徐煥棠, “摻雜稀土元素於磷砷化銦鎵之特性研究”, 私立中原大學, 碩士論文 (2001).
76. W. S. Su, T. T. Chen, C. L. Cheng, S. P. Fu, Y. F. Chen, C. L. Hsiao, and L. W. Tu, Nanotechnology 19, 235401 (2008).
77. H. Y. Chen, Y. C. Yang, H. W. Lin, S. C. Chang, and S. Gwo, Opt. Express 16, 13465 (2008.)
78. H. Y. Chen, D. Y. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
79. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C. –T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, Opt. Express 15, 9357 (2007).
80. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum, New York (1996).
81. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441, 325 (2006).
82. T. Ouisse, H. P. D. Schenk, S. Karmann, and U. Kaiser, Mater. Sci. Forum 264, 1389 (1998).
83. S. C. Shi, C. F. Chen, S. Chattopadhyay, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 87, 073109 (2005).
84. R. F. Kopf, E. F. Schubert, T. D. Harris, and R. S. Becker, J. Appl. Phys. 74, 6139 (1993).
85. W. Zhang, S. Roesel, H. R. Alves, D. Meister, and W. Kriegseis, Appl. Phys. Lett. 78, 772 (2001).
86. N. Teraguchi, A. Suzuki, Y. Saito, T. Yamaguchi, and T. Araki, J. Cryst. Growth 230, 392 (2001).
87. C. –W. Hu, H. Hibino, T. Ogino, I.S. T. Tsong, Surf. Sci. 487, 191 (2001).
88. R. L. Schwoebel, and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).
89. M. G. Lagally, and Z. Zhang, Nature 417, 907 (2002).
90. H. J. Trodahl, and F. Martin, Appl. Phys. Lett. 89, 061905 (2006).
91. V. S. Stepanyuk, and D. I. Bazhanov, Phys. Rev. B 63, 153406 (2001).
92. D. Zhuang, and J. H. Edgar, Mater. Sci. Eng. R 48, 1 (2005).
93. C. Adelmann, B. Daudin, R. A. Oliver, G. A. D. Briggs, and R. E. Rudd, Phys. Rev. B 70, 125427 (2004).
94. W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W. –H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, Appl. Phys. Lett. 88, 191913 (2006).
95. S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, Adv. Funct. Mater. 15, 781 (2005).
96. J. Zheng, Y. Yang, B. Yu, X. Song, and X. Li, ACS Nano 2(1), 134 (2008).
97. S. E. Wu, C. P. Liu, T. H. Hsueh, H. C. Chung, C. C. Wang, and C. Y. Wang, Nanotechnology 18, 445301 (2007).
98. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, Nano Lett. 4, 471 (2004).
99. F. Lin, N. Xiang, P. Chen, S. Y. Chow, and S. J. Chua, J. Appl. Phys. 103, 043508 (2008).
100. S. Chattopadhyay, K. H. Chen, S. C. Shi, C. T. Wu, C. H. Chen, and L. C. Chen, Appl. Phys. Lett. 89, 143105 (2006).
101. G. Ade, R. Lauer, Ultramicroscopy 77, 177 (1999).
102. T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 73, 487 (1998).
103. H. –M. Kim, Y. –H, Cho, H. Lee, S. I. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
104. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Nano Lett. 9, 2183 (2009).
105. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter and H. Lüth, Nano Lett. 7, 2248 (2007).
106. H. Sekiguchi, T. Nakazato, A. Kikuchi, and K. Kishino, J. Cryst. Growth 300, 259 (2007).
107. S. Vézian, F. Natali, F. Semond, and J. Massies, Phys. Rev. B 69, 125329 (2004).
108. K. A. Bertness, A. Roshko, K. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 300, 94 (2007).
109. D. Cherns, L. Meshi, I. Griffiths, S. Khogphetsak, S. V. Novikov, N. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008).
110. T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, Small 4, 751 (2008).
111. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, and H. Lüth, J. Appl. Phys. 105, 123707 (2009).
112. L. H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101, 113506 (2007).
113. H. Y. Chen, H. W. Lin, C. H. Shen, and Shangir Gwo, Appl. Phys. Lett. 89, 243105 (2006).
114. M. Strassburg, J. Senawiratne, N. Dietz, U. Haboeck, A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, and Z. Sitar, J. Appl. Phys. 96, 5870 (2004).
115. Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).
116. Y. S. Park, T. W. Kang, and R. A. Taylor, Nanotechnology 19,475402 (2008).
117. F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).
118. S. J. Pearton and F. Ren, Adv. Mater. 12,1571 (2000).
119. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000).
120. H. M. Kim, T. W. Kang, and K. S. Chyng, Adv. Mater. 15, 567 (2003).
121. S. D. Hersee, X. Sun, X. Wang, Nano Lett. 6, 1808 (2006).
122. S. Bhaviripudi, J. Qi, E. L. Hu, and A. M. Belcher, Nano Lett. 7, 3512 (2007).
123. S. Xue, X. Zhang, R. Huang, D. Tian, H. Zhuang, and C. Xue, Cryst. Growth Des. 8, 2177 (2008).
124. K. Jeganathan, M. Shimizu, and H. Okumura, Appl. Phys. Lett. 56, 073106 (2005).
125. K. Kawasaki, I. Nakamatsu, H. Hirayama, K. Tsusui, and Y. Aoyagi, J. Cryst. Growth 243, 129 (2002).
126. K. Hiramatsu, H. Matsushima, T. Shibata, Y. Kawagachi, N. Sawaki, Mater. Sci. Eng., B 59, 104 (1999).
127. J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai, and T. Mizutani, Appl. Phys. Lett. 90, 172114 (2007).
128. A. Trampert, O. Brandt, K. H. Ploog, J. I. Pankove, T. D. Moustakas, Semiconductors and Semimetals, Vol. 50, Academic Press, New York (1998), P. 167.
129. F. Dwikusuma, J. Mayer, T. F. Kuech, J. Cryst. Growth 258, 65 (2003).
130. I. Ahmad, M. Holtz, N. N. Faleev, and T. Temkin, J. Appl. Phys. 95, 1692 (2003).
131. X. X. Gu, D. M. Huang, H. Morkoç, Chin. Phys. Lett. 20, 1822 (2003).
132. A. Lochthofen, W. Mertin, G. Bacher, L. Hoeppel, S. Bader, J. Off, and B. Hahn, Appl. Phys. Lett. 93, 022107 (2008).
133. V. M. Bermudez, J. App. Phys. 80, 1990 (1996).
134. A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoç, and R. Molnar, Appl. Phys. Lett. 82, 1890 (2003).