| 研究生: |
陳建維 Chen, Jian-Wei |
|---|---|
| 論文名稱: |
兩滑動微接觸面三維奈米熱傳導模型理論之分析 Theoretical Analysis of Three-dimensional Nano-heat Transfer Arising at the Microcontact of Two Sliding Surfaces |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 微觀熱傳 、微接觸面 、奈米熱傳 |
| 外文關鍵詞: | microcontact, nano-heat transfer |
| 相關次數: | 點閱:157 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由材料薄膜製成的的電子裝置,其薄膜與基材間的接觸或是元件與元件間薄膜的接觸都不是百分之百接觸的,也就是其微觀下真實接觸面積遠比我們在巨觀下所看到的視面積小。而其接觸面積不過是數個無規則分佈的接觸峰尖,所有的熱、電等傳遞都必須透過這些接觸峰,因此這些接觸點的分佈跟摩擦產生之熱傳遞是本研究探討的主題。
本文應用碎形理論(fractal theory)與非傅利葉(non-Fourier)熱傳導定律,探討次微米薄膜微觀接觸下其奈米摩擦熱傳導的問題。當薄膜薄到次微米甚至奈米的情況下,必須考慮熱載子(聲子)所具有的導熱性質。本文先討論由碎形理論所建構描述的表面形貌,並獲得由其理論參數所建構的真實接觸面積、最大接觸面積與總負載。接著由單一點微接觸其力學作用導致接觸面的變化進而推導摩擦所產生的熱傳導溫度分佈,再加進非傅利葉定律考慮聲子的效應,先得到單一微接觸點的溫度分佈解。之後加入碎形理論建立次微米整體薄膜表面形貌的分佈與接觸面積等參數,並結合這兩種理論推導出由這些真實接觸面積之接觸溫度,最後藉熱傳分析求得塊材之整體溫度上升量。
本論文之特色為求出了含有聲子傳熱波動效應的三維奈米溫度場,而且從分析的結果發現:(一)粗糙峰之平均溫度會隨著碎形維度 、粗糙度參數 與無因次分離距離的增加而上升。(二)薄膜鍍在塊材上其對整體塊材的溫度上升率幾乎不造成影響。(三)傅利業定律與非傅利業定律在摩擦產生熱的瞬間其溫度差異不大,其差別在微觀下熱傳遞的過程。微觀下,本身波傳遞速度較快的材料其傳熱速度較快。(四)造成各種材料溫度差異的還有材料本身的參數如熱擴散係數與熱傳導係數,而硬度與楊式模數對溫度的影響不大。
In this study, we apply fractal theory to characterize and model the roughness of surface. We also apply non-Fourier’s law to consider the heat transfer effect of heat carrier. The temperature model of the three-dimensional nano-heat transfer is established and the frictional temperature rises at the microcontacts of two sliding surfaces are analyzed by fractal surfaces and temperature model.
According to the analysis results, the average temperature rise of single asperity increase as fractal dimension, topothesy and non-dimensional separation distance increase. The difference of the Fourier’s law and non-Fourier’s law is not the temperature arising at the microcontacts, the difference of them is when heat transfer from top to bottom of the asperity. When the process of heat transport in very small distance or in very short time, heat will be transferred faster. The properties which effect temperature of material are thermal diffusivity and thermal conductivity. Temperature will increase as the ratio of thermal diffusivity and thermal conductivity increase. Other properties of material like hardness and Young’s modulus which has small influence of temperature.
[1]Maxwell, J.C., 1867,“On the Dynamic Theory of Gases,”Philos. Trans. Soc. London, vol. 157, pp. 49-88.
[2]Peshkov, V., 1944,“Second Sound in HeliumⅡ,”J. Phys. USSR, vol. 8, pp. 381.
[3]Cattaneo, C., 1948,“Sulla Conduzione De Calore,”Atti del Semin. Mat. E. Fis. Univ. Modena, vol. 3, pp. 3.
[4]Garey, G.F. and Tsai, M., 1982,“Hyperbolic Heat Conduction by Method of Characteristic,”J. Heat Transfer, vol. 5, pp. 309-327.
[5]Glass, D. E., ö zisik, M. N., McRae, D. S., and Vick, B., 1985,“On the Numerical Solution of Hyperbolic Heat Conduction,”numer. Heat Transfer, vol. 8, pp. 497-504.
[6]Chen, H.T. and Lin, J.Y., 1993,“Numerical Analysis for Hyperbolic Heat Conduction,”Int. J. Heat Mass Transfer, vol. 36, pp. 2891-2898.
[7]Guo, Z.Y. and Xu, Y.S., 1992,“Non-fourier Heat Conduction in IC Chip,” IEEE InterSociety Conference on Thermal Phenomena, pp. 271-275,
[8]Tzou, D. Y., 1996, “Macro-to microscale heat transfer. Taylor & Francis ”.
[9]Greenwood, J. A. and Williamson, J. B. P., 1966 ,“Contact of Nominally Flat Surfaces.”Proceedings, Royal Society London. Vol. A295. pp. 300-319.
[10]Mandelbrot, B. B., 1967,“How Long Is the Coast of Britia? Statistical Self-Similarity and Fractal Dimension ,”Science, vol. 156, pp. 636-638
[11]Gecim, B., and Winer, W. O., 1985,“Transient Temperatures in the Vicicity of an Asperity Contact,”ASME Journal of Tribology, vol. 107, pp. 333-342.
[12]Bhushan, B., 1987.“Magnetic Head-Media Interface Temperature. Part 1-Analysis, Part 2-Application to Magnetic Tapes,”ASME Journal of Tribology, vol. 109, pp. 243-251 and 252-256.
[13]Majumdar, A., and Tien, C. L., 1990,“Fractal Characterization and Simulation of Rough Surfaces,”Wear, vol. 136, pp. 313-327.
[14]Majumdar, A., and Bhushan, B., 1990,“Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces,”ASME Journal of Tribology, vol. 112, pp. 205-216.
[15] Majumdar, A., and Bhushan, B., 1991,“Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,”ASME Journal of Tribology, vol. 113, pp. 1-11.
[16]Wang, S., and Komvopoulos, K., 1994,“A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part 1-Elastic Contact and Heat Transfer Analysis,” ASME Journal of Tribology, vol. 116, pp. 812-822.
[17]Lin, J. F., and Chung, J. C., “Fractal Approach to the Contact Mechanics of Rough Anisotropy Surfaces,”
[18]Vick, B., and Furey, M. J., 2001“A Basic Theoretical Study of the Temperature Rise in Sliding Contact with Multiple Contacts”Tribology International, vol. 34, pp. 823-829.
[19]Timoshenko, S. P., and Goodier, J. N., 1951, Theory of Elastic, New York, Megran-Hill, pp. 1-404.
[20]Greenwood, J.A. and Trioo. J. H. (1970-71), “The Contact of Two Nominally Flat Rough Surfaces,”Proc. Instn Mech. Engrs 185, 625-633
[21]Pullen, J., and Williamson, J. B. P., 1972,“On the Plastic Contact of Roughness Surfaces,”Proc. Roy. Soc. London, Series A327, pp. 157-173.
[22]Chang, W. R., and Etsion, I., and Bogy, D. B., 1987,“An Elastic-Plastic Model for the Contact of Rough Surface,”ASME Journal of Tribology, vol. 109, pp. 257-263
[23]Sayles, R. S., and Thomas, T. R., 1979,“Measurement of the Statistical Microgeometry of Engineering Surfaces,”ASME Journal of Lubrication Technology, vol. 101, pp. 409-418.
[24]Greenwood, J. A., 1984“A Unified Theory of Surface Roughness,”Proc. Roy. Soc. London, vol, A393, pp. 133-157.
[25] Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York, NY, pp. 1-83 and 116-118.
[26]Jhonson, K. L.,1989, Contact Mechanics, Cambridge University Press, Cambridge, pp. 406-416.
[27]Ling, F. F., 1989,“The Possible Role of Fractal Geometry in Tribology,”Tribol. Trans., vol,32, pp. 497-505.
[28]Luo, J. F., and Domdeld, D. A., 2001“Material Removel Mechamism in Chemical Mechanical Polishing:Theory and Modeling,”IEEE,Transactions on Semiconductor Manufacturiong, vol. 14, pp112-133.
[29]Thomas, T. R. M. Sc., Ph. D., C. Eng., F. Inst. P., M. I. Mech. E., M. I. Prod. E., Rough Surface, pp.105-110.
[30] Bhushan, B. Ph. D. Sc,1986, Handbook of Micro/Nano Triboogy, CRC Press.,Chap3.
[31]歐陽裕龍, 2002 ,‘‘銅膜化學機械研磨碎形量測及砥粒刮蝕黏附效應之理論建立與實驗印證’’, 碩士論文,國立成功大學機械研究所。
[32]李昌俊, 2002 ,‘‘激光的衍射及熱作用計算” 北京, 科學出版社。
[33]劉靜, 2001 , ‘‘微米/納米尺度傳熱學” 北京, 科學出版社。
[34]劉國基, 2002, ‘‘雙曲線型擴散問題之探討’’ 博士論文,國立成功大學機械研究所。
[35] Cattaneo C. ,1958,“A form of heat conduction equation which eliminates the paradox of instantaneous propagation. ” Compute Rendus; 247:431-3.
[36] Vernotte P., 1958, “Les paradoxes de la theorie continue de l’equation dela chaleur. ” Compute Rendus;246:3145-55.
[37]Flik, M., Choi, B. I., And Goodson, K. E., 1992,“Heat transfer regimes in microstructures.”ASME J. of Heat Transfer,Vol.114:
666-674
[38]Bharat, B., 2002, “Introduction to Tribology”The Ohio State University