簡易檢索 / 詳目顯示

研究生: 張騌麒
CHI, Jang-Tzung
論文名稱: 結構方程模式於探討水文指標與溪流生態系統關聯性之研究
Structural Equation Modeling for Examining the Relationship Between Hydrologic Indicators and Stream Ecosystem
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 自然流態結構方程模式生物多樣性羅吉斯回歸溪流生態生態水文指標主成份分析
外文關鍵詞: Logistic Regression Analysis, Stream Ecology, Eco-hydrological Indicator, Biodiversity, Principal Component Analysis, Natural Flow Regime, Structural Equation Modeling
相關次數: 點閱:164下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然流態的變化特性對於溪流生態具有相當大的影響性,藉由溪流生態與水文特徵變化關係的探討,可了解不同生物和流態間的連結,顯示生態水文指標的建立對於生態流量的管理十分重要。
    本研究利用主成份分析、結構方程模式等統計方法逐步篩選,挑選出具有代表水文氣候、水質狀況與生物多樣性等多重資訊的水文指標。結構方程模式主要運用於因果關係之分析探討,並具有多項的模式評鑑指標,使研究者可以進一步檢驗研究模式的整體適切性,達到提高研究精確度之目的,相當適合於探討水文指標與魚類生態之關聯性。本研究利用結構方程模式建立出五個水質模式與一個生物多樣性模式,水質模式探討了水文指標與河川污染指標(River Pollution Index,RPI)間之因果關係,指出了水文指標與水質情況的相關性;生物多樣性模式則是探討了水文指標與夏農指數(Shannon Index,SI)之因果關係,指出了反應水文特性、水質狀況之水文指標與生物多樣性之相關性,藉由水質模式與生物多樣性模式分析的結果,則可挑選出具有代表多重資訊之水文指標。
    此外,本研究亦採用了羅吉斯回歸分析,利用了魚類於五個流域之出現情況,將水文指標與魚類族群分佈情況加以連結,探討特定魚類族群偏好之水文特性。而藉由計算魚類族群在各個水文指標影響下於五個流域之出現機率,則可以了解多重資訊之水文指標與特定魚類族群之相關性。
    本研究所得的指標,除了能獲得魚類族群對於特定水文、水質環境需求的資訊,並可提供水利單位作為生態流量管理的參考,期許在水資源管理層面上可以對溪流生態系統的維護達到更大的幫助。

    The variability of the natural flow regime has a strong influence on the stream ecosystems. By examining the relationships between stream ecosystems and hydrologic characteristics, we can understand the preference of different organisms to flow regimes. The development of the ecohydrological indicators is quite important to the management of ecological flow.
    By using principal component analysis (PCA) and structural equation modeling (SEM), we select the ecohydrological indicators that could express the significance of hydro-climate, water quality and fish species diversity. Then the logistic regression analysis model is used to examine the relation between fish and hydrologic indicators by using fish's present conditions. The structural equation modeling provides examination of a set of relationships between one or more independent variables and one or more dependent variables, so the modeler could explicitly capture the unreliability of measurement in the model, which in theory allows the structural relations between latent variables to be accurately estimated.
    In this study, the structural equation model is used to build five water quality models and one biodiversity model. The water quality model examines the causality of hydrologic indicators and River Pollution Index (RPI), which expresses the relationship between the hydrological indicators and water quality condition, and the biodiversity model examines the causality of hydrological indicators and Shannon Index (SI), which expresses the relationship between hydrological indicators and biodiversity. By analyzing water quality and biodiversity models, a suite of hydrological indicators representing multiple characteristics can be obtained.
    The ecohydrological indicators selected from this research can not only provide the specific hydrologic and water quality information that fish requires, but also can provide the guidance for water resources authorities to achieve the goal of ecological restoration.

    摘要........................................I Abstract ..................................II 目錄.......................................IV 表目錄.....................................VI 圖目錄...................................VIII 第一章 緒論................................1 1.1 研究動機與目的.........................1 1.2 論文架構...............................3 第二章 文獻回顧............................5 2.1 自然流態概念...........................5 2.2 水文指標的發展.........................6 2.3 自然流態變化與溪流生態之相關性........10 2.4 結構方程模式的發展與應用..............11 2.5 魚類相關之生態研究....................11 第三章 研究地點與資料蒐集.................13 3.1 台灣地形、水文與氣候特性概況..........13 3.2 水文資料之蒐集........................13 3.3 水質資料之搜集........................17 3.4 魚類資料之蒐集........................22 第四章 研究方法與採用指標.................27 4.1 主成份分析(PCA)與比例原則...........27 4.1.1 主成份分析..........................27 4.1.2 比例原則(proportion principle)....28 4.2 結構方程模式..........................31 4.2.1 結構方程模式的基本元素..............31 4.2.2 測量模式與結構模式..................32 4.2.3 結構方程模式之數學方程式............34 4.2.4 SEM模式之建立步驟...................37 4.2.5 模式評估............................39 4.2.6 模式修正............................44 4.2.7 小結................................45 4.3 羅吉斯回歸............................45 4.4 採用之水文、水質與生物多樣性指標......47 第五章 研究成果與分析.....................51 5.1 主成份分析與比例原則篩選之水文指標....51 5.1.1 水文指標之篩選......................51 5.1.2 水文指標之分類......................55 5.2 水質模式與生物多樣性之SEM模式.........56 5.2.1 水質模式............................57 5.2.2 生物多樣性模式......................65 5.2.3 水文指標之多重綜合資訊..............66 5.3 羅吉斯回歸分析........................67 5.3.1 勝算比分析..........................67 5.3.2 魚類出現機率........................70 5.4 小結..................................72 第六章 結論與建議 .........................74 6.1 結論 ..................................74 6.2 建議 ..................................75 參考文獻...................................77

    王漢泉,「台灣河川水質魚類指標之研究」,環境檢驗所環境調查
    研究年報,2002。
    內政部營建署太魯閣國家公園管理處,「太魯閣國家公園動物生態
    資源調查」,1983。
    行政院環保署環境檢驗所,「環境調查研究年報」,1993。
    周偉融、方力行,「以多變數分析探討朴子溪長期水質變動之情
    形」。中華民國環境工程學會第十六屆學術研討會,2004。
    經濟部水資源統一規劃委員會,「淡水河流域底棲生物與魚類調查
    及水質評估」, 1983。
    經濟部水資源統一規劃委員會,「淡水河流域水生物調查及水質評
    估之研究」,1994。
    劉棠瑞、蘇鴻傑,「森林植物生態學」,台灣商務印書館,1989。
    蕭政宗、吳富春,「集集攔河堰最佳引水與河川生態流量之研
    究」,第十四屆水利工程研討會論文集,新竹,第C1-C8頁,
    2004。
    蕭政宗、吳富春,「變異範圍法RVA應用於河川生態流量之規劃」,
    第二屆生態工程學術研討會論文集,台北,第33-58頁,2005。
    顧玉蓉,「溪流結構物對生態影響之定量評估」,國立成功大學水
    利及海洋工程研究所博士論文,2007。
    Arbuckle, J. L., Amos user's guides. Chicago: SmallWaters,
    1997.
    Bentler, P. M., Theory and implementation of EQS: A
    structural equations program. Los Angeles: BMDP
    Statistical Software, 1985.
    Browne, M. W., Mels, G., & Cowan, M., Path analysis: RAMONA. SYSTAT for DOS advanced applications (Version 6,
    pp. 167-224.). Evanston, IL: SYSTAT, 1994.
    Bunn S. E., Edward D. H., Loneragan N. R., Spatial and
    temporal variation in the macroinvertebrate fauna of
    streams of the northern Jarrah Forest, Western
    Australia: community structure. Freshwater Biology 16:
    67–91, 1986.
    Cushing C. E., McIntire C. D., Cummins K. W., Minshall G.
    W., Petersen R. C., Sedell J. R., Vannote R. L.,
    Relationships among chemical, physical and biological
    indices along a river continua based on multivariate
    analyses. Archiv f¨ur Hydrobiologie 98: 317–326, 1983.
    Davies B. R., Thoms M., Meador M., An assessment of the
    ecological impacts of inter-basin water transfers, and
    their threats to river basin integrity and conservation,
    Aquatic Conservation: Marine and Freshwater Ecosystems
    2:325–349, 1992.
    Grace, J. B., Pugesek, B. H., A structural equation model
    of plant species richness and its application to a
    coastal wetland. American Naturalist. 149(3).436-460,
    1997.
    Haines A. T., Findlayson B. L., McMahon T. A., A global
    classification of river regimes. Applied Geography 8:
    255–272, 1988.
    Hawkes C. L., Miller D. L., Layher W. G., Fish ecoregions
    of Kansas: stream fish assemblage patterns and
    associated environmental correlates”. Environmental
    Biology of Fishes 17: 267–279, 1986.
    Horwitz R. J., Temporal variability patterns and the
    distributional patterns of stream fishes. Ecological
    Monographs 48: 307–321, 1978.
    Hu W. W., Wang G. X., Deng W., Li S. N., The influence of
    dams on ecohydrological conditions in the Huaihe River
    basin, China. Ecological Engineering, VOL. 33, Pages 233-
    241, 2008.
    Jöreskog, K.G., A General Method for Estimating a Linear
    Structural Equation System. In A.S. Goldberger & O.D.
    Duncan (eds.), Structural equation models in the
    sciences. New York: Seminar Press, 1973.
    Jöreskog, K. G., & Sörbom, D., LISREL 7: A guide to the
    program and applications. Chicago: SPSS, 1989.
    Kaiser H., The Varimax Criterion for Analytic Rotation in
    Factor Analysis, Psychometrika, 23(3),187-200,1958.
    Keesling, J. W., Maximum likelihood approaches to causal
    analysis. Unpublished doctoral dissertation. University
    of Chicago, 1972.
    Lytle, D. A., and N. L. Poff., Adaptation to natural flow
    regimes. Trends in Ecology and Evolution 19:94–100,
    2004.
    Malaeb, Z. A., Summers, J. K., Pugesk, B. H., Using
    structural equation modeling to investigate
    relationships among ecological variables. Environmental
    and Ecological Statistics. 7. 93-111, 2000.
    McMahon T. A., Finlayson B. L., Haines A. T., Srikanthan
    R., “Global Runoff—Continental Comparisons of Annual
    Flows and Peak Discharges”. Catena: Cremlingen-Destedt,
    Germany, 1992.
    Mugodo J., Kennard M., Liston P., Nichols1 S., Linke1 S.,
    Norris R. H., Lintermans M., Local stream habitat
    variables predicted from catchment scale characteristics
    are useful for predicting fish distribution.
    Hydrobiologia 572:59–70, 2006.
    Muthén, L. K., & Muthén, B. O., Mplus: The comprehensive
    modeling program for applied researchers. Los Angeles:
    Muthén & Muthén, 1998.
    Olden J. D., Poff N. L., Redundancy and the choice of
    hydrologic indices for characterizing streamflow
    regimes. River Research and Applications 19: 101–121,
    2003.
    Owen M., Groundwater abstraction and river flow, Journal
    of the Institute of Water and Environmental Management
    5: 697–703, 1991.
    Petts G., Maddock I., Bickerton M., Ferguson A. J. D.,
    Linking hydrology and ecology: the scientific basis for
    river management. In The Ecological Basis for River
    Management, Harper D. M., Ferguson A. J. D(eds).,Wiley
    & Sons: Chichester; 1–16, 1995.
    Poff N. L., Ward J. V., Implications of streamflow
    variability and predictability for lotic community
    structure: a regional analysis of streamflow patterns.
    Canadian Journal of Fisheries and Aquatic Sciences 46:
    1805–1818, 1989.
    Poff N. L., Allan J. D., Functional organization of stream
    fish assemblages in relation to hydrological
    variability”. Ecology 76: 606–627, 1995.
    Poff N. L., Allan J. D., Bain M. B., Karr J. R.,
    Prestegaard K. L., Richter B. D., Sparks R. E.,
    Stromberg J. C., The natural flow regime. Bioscience 47:
    769–784, 1997.
    Richter B. D., Baumgartner J. V., Powell J., Braun D. P.,
    A method for assessing hydrologic alteration within
    ecosystems, Conservation Biology 10: 1163–1174, 1996。
    Richter B. D., Baumgartner J. V., Wigington, R., Braun D.
    P., How much water does a river need? Freshwater Biology
    37: 231–249,1997。
    Suen J., Herricks E. E., Investigating the causes of fish
    community change in the Dahan River (Taiwan) using an
    autecology matrix. Hydrobiologia 568(1): 317-330, 2006
    The Nature Conservancy, Indicators of Hydrologic
    Alteration User's Manual,
    http://conserveonline.org/docs/2000/12/iha_man.pdf, 2001.
    Ward J. V., Stanford J. A., The serial discontinuity
    concept: extending the model to floodplain rivers,
    Regulated Rivers: Research and Management 10: 159–168,
    1995.
    Yamazaki Y., Haramoto S., Fukasawa T., Habitat uses of
    freshwater fishes on the scale of reach system provided
    in small streams. Environmental Biology of Fishes75:333–
    341, 2006.
    Yang Y. C. E, Cai X. M., Herricks E. E., Identification of
    hydrologic indicators related to fish diversity and
    abundance: A data mining approach for fish community
    analysis, Water Resources Research, VOL. 44, W04412,
    2008.

    下載圖示 校內:2010-09-02公開
    校外:2010-09-02公開
    QR CODE