簡易檢索 / 詳目顯示

研究生: 石樂琦
Shih, Le-Chi
論文名稱: 公車路線設計下的補貼分配最佳化
Optimal Subsidy Allocation for Bus Route Design
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 95
中文關鍵詞: 公車路線設計補貼分配多目標問題ε-限制法雙層規劃法
外文關鍵詞: transit network design, subsidy allocation, multi-objective problem, ε-constraint method, bi-level programming method
相關次數: 點閱:131下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大眾運輸工具為一共享運輸的服務,包含了公車、捷運、以及輕軌系統。他們產生的效益有節能、減少空氣汙染、減少擁擠、以及提升了便利性。對於公車營運者來說,要達到這些效益需要有一個完整的路網和足夠的資金才能營運。因此,公車路線設計和補貼是兩個應該被討論的重要議題。
    路線設計一直是最佳化問題中的重要課題。一般來說,在設計商用車輛的路線時只考慮使用者和營運者。然而,對於公車路線設計問題,由於加入補貼的元素,所以我們不僅考慮使用者和營運者,也同時考慮政府單位。由於缺乏補貼分配模式,公帑常被浪費且不公平的分配。為了最小化使用者和政府單位的成本並最大化營運者的收益,我們需要結合考慮使用者、營運者、和政府單位這三個方面。
    本研究的目的是在給定起訖對的情況下,考慮三個衝突目標來設計最佳公車路線,並決定公車路線下的最佳補貼分配。因此,我們建構一個多目標問題並使用ε-限制法以求得此問題的最佳解,再用雙層規劃法來進行驗證。所提出的方法在台灣的嘉義路網中進行測試。

    Public transportation is a shared transport service including bus, mass rapid transit (MRT), and light rail transit (LRT), which provide energy saving, air pollution reduction, congestion reduction and convenience enhancement. To bus operators, there must be a complete network and enough money to operate. As a result, bus route design and subsidy are two important issues which should be discussed.
    Route design has been an important topic of optimization problems. Generally speaking, it takes only users and operators into consideration when designing routes for commercial vehicles. However, in the bus route design problem, we take not only users and operators into consideration but also authorities as a result of subsidies. Because there is lack of subsidy allocation model, public funds are wasted and not allocated fairly. In order to minimize the users’ and authorities’ cost and maximize the operators’ profit, we need to combine the three aspects.
    The purposes of this research are to design the optimal bus routes under the consideration of three conflict objectives when origin-destination pairs are given, and to determine the optimal subsidy allocation for bus routes. As a result, we formulate a multi-objective problem with ε-constraint method to find the optimal solution and use bi-level programming method to verify it. The proposed methods are tested in a realistic network in Chiayi, Taiwan.

    ABSTRACT I 摘要 II TABLE OF CONTENTS III LIST OF TABLES VI LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Objective 2 1.3 Research Flow Chart 2 CHAPTER 2 LITERATURE REVIEW 5 2.1 Transit Network Design 5 2.2 Subsidy 9 2.3 Multi-Objective Optimization Approach 10 2.3.1 Model of Multi-Objective Optimization 11 2.3.2 Applications of Multi-Objectives Approach in TNDP 12 2.4 ε-Constraint Method 14 2.5 Bi-Level Programming Method 19 CHAPTER 3 RESEARCH METHODOLOGY 21 3.1 Problem Statement and Research Assumption 21 3.2 Research Framework 22 3.3 Model Formulation 25 3.4 Subsidy 28 3.5 Solution Algorithm 30 CHAPTER 4 EXPERIMENT DESIGN 42 4.1 Algorithm Framework 42 4.2 Data Description 45 4.2.1 Basic Data of Experimental Network 45 4.2.2 O-D Demand 46 4.2.3 Subsidy 49 4.3 Summary 52 CHAPTER 5 EMPIRICAL STUDY 53 5.1 Results of the ε-constraint Method with the Objective of Subsidy 53 5.2 Results of the ε-constraint Method with the Objective of Travel Cost 61 5.3 Results of the ε-constraint Method with the Objective of Service Population 67 5.4 Result of Bi-Level Programming Method and Comparison 73 5.5 Comparison of the Research with the Current Practice 77 5.6 Summary 82 CHAPTER 6 CONCLUSIONS AND SUGGESIONS 83 6.1 Conclusions 83 6.2 Suggestions 84 REFERENCES 85 Appendix A Empirical study parameter table 89 Appendix B O-D table 95

    1. Abrantes, P. A. (2015). The Economic Value of Bus Subsidy. Transportation Research Procedia, 8, 247-258.
    2. Bard, J. F. (2013). Practical bilevel optimization: algorithms and applications (Vol. 30). Springer Science & Business Media.
    3. Bialas, W. F., & Karwan, M. H. (1984). Two-level linear programming. Management science, 30(8), 1004-1020.
    4. Cancela, H., Mauttone, A., & Urquhart, M. E. (2015). Mathematical programming formulations for transit network design. Transportation Research Part B: Methodological, 77, 17-37.
    5. Caramia, M., & Dell'Olmo, P. (2008). Multi-objective management in freight logistics: Increasing capacity, service level and safety with optimization algorithms. Springer Science & Business Media.
    6. Ceder, A., & Wilson, N. H. (1986). Bus network design. Transportation Research Part B: Methodological, 20(4), 331-344.
    7. Current, J. R., Velle, C. R., & Cohon, J. L. (1985). The maximum covering/shortest path problem: A multiobjective network design and routing formulation. European Journal of Operational Research, 21(2), 189-199.
    8. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
    9. Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business Media.
    10. Fan, W., & Machemehl, R. B. (2004). Optimal transit route network design problem: Algorithms, implementations, and numerical results (No. SWUTC/04/167244-1,).
    11. Frankena, M. W. (1983). The efficiency of public transport objectives and subsidy formulas. journal of Transport Economics and Policy, 67-76.
    12. Gao, Z., Wu, J., & Sun, H. (2005). Solution algorithm for the bi-level discrete network design problem. Transportation Research Part B: Methodological, 39(6), 479-495.
    13. Ingersoll, J. E. (1987). Theory of financial decision making (Vol. 3). Rowman & Littlefield.
    14. Jackson, R. (1975). Optimal subsidies for public transit. Journal of Transport Economics and Policy, 3-15.
    15. Jozefowiez, N., Semet, F., & Talbi, E. G. (2008). Multi-objective vehicle routing problems. European journal of operational research, 189(2), 293-309.
    16. Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem: review. Journal of transportation engineering, 135(8), 491-505.
    17. Li, X. (2015). Multi-Dimensional Assessment of Transit System Efficiency and Incentive-based Subsidy Allocation.
    18. Lobsiger, S. I. K. (2016). The problem of route alignment bus transport network system.
    19. Lu, J., Shi, C., & Zhang, G. (2006). On bilevel multi-follower decision making: General framework and solutions. Information Sciences, 176(11), 1607-1627.
    20. Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and algorithms. Transportation science, 18(1), 1-55.
    21. Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
    22. Owais, M., Osman, M. K., & Moussa, G. (2016). Multi-Objective Transit Route Network Design as Set Covering Problem. IEEE Transactions on Intelligent Transportation Systems, 17(3), 670-679.
    23. Spasovic, L. N., Boile, M. P., & Bladikas, A. K. (1994). Bus transit service coverage for maximum profit and social welfare. Transportation Research Record, (1451).
    24. Szeto, W. Y., & Jiang, Y. (2014). Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach. Transportation Research Part B: Methodological, 67, 235-263.
    25. Tisato, P. (1998). Service unreliability and bus subsidy. Transportation Research Part A: Policy and Practice, 32(6), 423-436.
    26. Tzeng, G. H., & Shiau, T. A. (1988). Multiple objective programming for bus operation: a case study for Taipei city. Transportation Research Part B: Methodological, 22(3), 195-206.
    27. Yao, B., Hu, P., Lu, X., Gao, J., & Zhang, M. (2014). Transit network design based on travel time reliability. Transportation Research Part C: Emerging Technologies, 43, 233-248.
    28. Zhao, F., & Ubaka, I. (2004). Transit network optimization-minimizing transfers and optimizing route directness. Journal of Public Transportation, 7(1), 4.
    29. Zhao, F., Ubaka, I., & Gan, A. (2005). Transit network optimization: Minimizing transfers and maximizing service coverage with an integrated simulated annealing and tabu search method. Transportation Research Record: Journal of the Transportation Research Board, (1923), 180-188.
    30. Zhou, Y., Kim, H. S., Schonfeld, P., & Kim, E. (2008). Subsidies and welfare maximization tradeoffs in bus transit systems. The Annals of Regional Science, 42(3), 643-660.
    31. 王湮筑, & 馮正民. (1999). 市區公車之既有路線調整與新闢路線規劃程序之研究 (Doctoral dissertation).
    32. 王穆衡等 (2003). 公路汽車客運業營運虧損補貼計畫之分析. 交通部運輸研究所,1-118.
    33. 王惠吟. (2011). 捷運接駁公車路線規劃模式之設計與應用. 臺北大學都市計劃研究所學位論文, 1-201.
    34. 朱宏祥, & 馮正民. (1994). 台北市棋盤式公車路網與現況公車路網之效益評估比較 (Doctoral dissertation).
    35. 邱奕明. (1998). 公車路線調整準則與評估方法之研究. 國立台灣大學土木工程學研究所碩士論文, 1-199.
    36. 張亦寬. (2004). 以雙層次數學規劃建構旅客需求導向之票價設計模式-以台灣高鐵為例. 成功大學交通管理科學系學位論文, 1-115.
    37. 郭婉容. (2012). 考量區域公平下公路汽車客運營運虧損補貼分配之最佳化. 交通大學交通運輸研究所學位論文, 1-106.
    38. 彭億玟. (2009). 地區公路汽車客運營運路網設計策略之研究. 淡江大學運輸管理學系碩士班學位論文, 1-109.
    39. 嘉義市區公車路網系統整體規劃. (2016),鼎漢國際工程顧問股份有限公司.
    40. 嘉義市區公車起訖資料. (2015),鼎漢國際工程顧問股份有限公司.

    下載圖示 校內:2018-08-01公開
    校外:2018-08-01公開
    QR CODE