| 研究生: |
簡嘉宏 Jian, Jia-Hung |
|---|---|
| 論文名稱: |
廢氣煙道熱擷取暨熱電系統設計 The Analysis and Design of Thermoelectric Generator Module used in Waste Heat Recovery System |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 熱電發電機 、廢熱回收 、數值模擬 |
| 外文關鍵詞: | thermoelectric generator, waste gas recovery, numerical simulation |
| 相關次數: | 點閱:80 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用三維物理模型模擬廢氣煙道熱擷取熱電系統,分析嵌入式熱電模組於廢氣煙道中流場、溫度場以及電場之分布。研究中,因為工作流體為具有放射性之廢氣(CO2:13%;H2O:6%),考慮輻射效應將高於無考慮輻射效應8%~14%,因此研究中必須同時考慮對流及輻射熱傳。研究中分析不同嵌入式熱電模組之鰭片幾何尺寸(鰭片高度0mm < Hfin <150mm、鰭片支數4 < N < 8)於不同操作條件下(進口風速Vin = 1、3、5m/s、廢氣溫度Tgas = 500、600、700K)模組之發電性能。探討熱電模組之理想發電密度(Pideal/A)與鰭片所造成之泵功密度(Ppumping power/A)以及模組淨發電密度(Pnet/A)之變化。
此外,自行架設小型風洞實驗系統,量測不同鰭片幾何尺寸及操作條件下,熱電模組之性能曲線(V-I與P-I曲線),發現實驗數據與數值模擬比對具有良好的一致性,P-I曲線最大誤差約9.8%。最後以Visual Basic程式語言撰寫一套電腦輔助軟體,建立交談式之人機介面。輸入合適之參數(模組幾何參數、冷熱側流體、晶片熱電物理性質…等參數),可得到晶片發電性能參數(開路電壓、電流、發電功率…等參數),藉由電腦輔助軟體,可以達到預測功能進而減少金錢及時間上之成本損耗。
The research investigates three-dimensional model to simulate thermoelectric system used in chimney, and analyze the distribution of flow, thermal and electric field for thermoelectric model. In this study, it must be considered the effect of radiation and convection simultaneously due to the operational fluid that is radioactive waste gas, and it would be larger than the effect which neglects the radiation about 8%-14%. The paper study the performance which are the ideal power output pumping power and net power of thermoelectric model with different geometric size of fin (fin height, Hfin range from 0mm to 150mm, and number of fin, N range from 4 to 8) and different operational conditions (inlet velocity, Vin = 1, 3, 5m/s, and waste gas temperature, Tgas = 500, 600, 700K).
The experiment of wind tunnel is set and the thermoelectric model of performance curve (V-I and P-I) are measured in different geometric fin sizes and operational conditions. There are good agreement between experimental data and numerical result, the maximum error is below 9.8% in P-I curve. Finally, the computer-aided design software is developed which is built by Visual Basic. The software can offer performance of the thermoelectric chip such as the open voltage, electric current and power output…etc. when proper parameters(geometric parameter of model, properties of operational fluid and chip…etc.) are input. Otherwise, it is able to predict and decrease the cost and time used in experiment as well.
1. Seebeck, T.J.,“Magnetische polarisation der metalle und erzedurch temperatur-differenz. abhand deut”, Akad. Wiss. Berlin, pp. 265-373, 1822.
2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques”, Ann. Chem., LVI, pp. 371-387, 1834.
3. Thomson, W., “On a mechanical theory of thermoelectric currents”, Proc. Roy. Soc. Edinburgh, pp. 91-98, 1851.
4. Altenkirch, E., “ber Den Nutzeffekt Der Thermosäule”, Physikalische Zeitschrift, Vol. 10, pp. 560-580, 1909.
5. Altenkirch, E., “Elektrothermische Kälteerzeugung Und Reversible Elektrische Heizung”, Physikalische Zeitschrift, Vol. 12, pp. 920-924, 1911.
6. Ioffe, A.F., “Semiconductor thermoelements and thermoelectric cooling”, Infosearch Limited, London, 1957.
7. Riffat, S.B. and Ma, X., “Thermoelectrics: A Review of Present and Potential Applications”, Applied thermal engineering, Vol. 23, pp. 913-935, 2003.
8. Hsiao, Y.Y., Chang, W.C. and Chen, S.L., “A Mathematic Model of Thermoelectric Module with Applications on Waste Heat Recovery from Automobile Engine”, Energy, Vol. 35, pp. 1447-1454, 2010.
9. Thacher, E.F., Helenbrook, B.T., Karri, K.A., Richter, C.J., “Testing of an automobile exhaust thermoelectric generator in a light truck”, Proceedings of the Institution of Mechanical Engineers - Part D: Journal of Automobile Engineering, Vol. 221, pp. 95-107, 2007.
10. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B. and Yao, D.J., “Experiments and Simulations on Low-Temperature Waste Heat Harvesting System by Thermoelectric Power Generators”, Applied Energy, Vol. 88, pp. 1291-1297, 2011.
11. Suzuki, R.O. and Tanaka, D., “Mathematical Simulation of Thermoelectric Power Generation with the Multi-Panels”, Journal of Power Sources, Vol. 122, pp. 201-209, 2003.
12. Crane, D.T. and Jackson, G.S., “Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery”, Energy conversion and management, Vol. 45, pp. 1565-1582, 2004.
13. Niu, X., Yu, J. and Wang, S., “Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator”, Journal of Power Sources, Vol. 188, pp. 621-626, 2009.
14. Gou, X., Xiao, H. and Yang, S., “Modeling, Experimental Study and Optimization on Low-Temperature Waste Heat Thermoelectric Generator System”, Applied Energy, Vol. 87, pp. 3131-3136, 2010.
15. Astrain, D., Vian, JG, Martínez, A. and Rodríguez, A., “Study of the Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric Generation System”, Energy, Vol. 35, pp. 602-610, 2010.
16. Lee, S., “Optimum Design and Selection of Heat Sinks”, Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, Vol. 18, pp. 812-817, 1995.
17. Qiu, K. and Hayden, A.C.S., “Development of a Thermoelectric Self-Powered Residential Heating System”, Journal of Power Sources, Vol. 180, pp. 884-889, 2008.
18. Wirtz, R.A., Chen, W. and Zhou, R., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic Packaging, Vol. 116, pp. 206, 1994.
19. Jousson, H. and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks under Varying Bypass Conditions”, Components and Packaging Technologies, IEEE Transactions on, Vol. 23, pp. 47-54, 2000.
20. Jonsson, H. and Moshfegh, B., “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass”, Components and Packaging Technologies, IEEE Transactions on, Vol. 24, pp. 142-149, 2001.
21. Hossain, R., Culham, J.R. and Yovanovich, M.M., “Influence of Bypass on Flow through Plate Fin Heat Sinks”, Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007. Twenty Third Annual IEEE, pp. 220-227, 2007.
22. Prstic, S., Iyengar, M. and Bar-Cohen, A., “Bypass Effect in High Performance Heat Sinks”, Strojniski Vestnik, Vol. 47, pp. 441-448, 2001.
23. Barrett, A.V. and Obinelo, I.F., “Characterization of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects through CFD Methods”, Semiconductor Thermal Measurement and Management Symposium, 1997. SEMI-THERM XIII., Thirteenth Annual IEEE, pp. 158-164, 1997.
24. 黃有晟,”鰭片嵌入式熱電模組之性能測試與分析”,國立成功大學,機械工程研究所,2012.
25. Jang, J.Y., Tsai, Y.C. and Wu, C.W. "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, vol. 53, pp. 270-281, 5/1/ 2013.
26. Launder, B.E. and Spalding, D.B. “The Numerical Computation of Turbulent Flows”, Computer methods in applied mechanics and engineering, Vol. 3, pp. 269-289, 1974.
27. Chen, Y.S., Kim, S.W., “Computation of turbulent flows using an extended turbulence closure model”, NASA CR-179204. 1987
28. Wang, T. S., Chen, Y. S., “Unified Navier-Stokes Flow Field and Performance Analysis of Liquid Rocket Engines”, Journal of Propulsion and Power, Vol. 9, No. 5, pp. 678-685, 1993.
29. Modest, M.F., Editor, “Radiative heat transfer”, 2nd ed., McGraw-Hill New York, USA, 2003.
30. Fiveland, W., “Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures”, Journal of Heat Transfer, Vol. 106, No. 4, pp. 699–706, 1984.
31. Incoropera, F.P., DeWitt, D.P., Editor, “Fundamentals of heat and mass transfer”, 5th ed., John Wiley & Sons, Hoboken, USA, 2002.
32. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004.
33. STAR-CD, Methodology, Version 3.15, Japan, 2001
34. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method predicting Incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
35. Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation, 1984.