簡易檢索 / 詳目顯示

研究生: 許銘淳
Hsu, Ming-Chun
論文名稱: Flupirtine(氟吡汀)對於類運動神經細胞中鉀離子電流的調節作用
Flupirtine-Mediated Regulation of Potassium Currents in Motor Neuron-Like Cells
指導教授: 吳勝男
Wu, Sheng-Nan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: 氟吡汀延遲糾正鉀離子電流M型鉀離子電流類運動神經元細胞
外文關鍵詞: Flupirtine, delayed-rectifier K+ current, M-type K+ current, NSC-34 cells, NG108-15 cells
相關次數: 點閱:65下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氟吡汀(Flupirtine)屬於一種三氨基吡啶 (triaminopyridine) 的藥物,其主要功能被認是為一種中樞性肌肉鬆弛劑和神經保護特性的非阿片類鎮痛劑。此類藥物被用於多種神經興奮性相關疾病,例如癲癇以及神經方面病變所造成的疼痛。先前研究指出氟吡汀可能作為一種NMDA受體的拮抗劑,並且也同時影響GABAA受體的活性。另外亦可透過刺激M型鉀離子通道(M-type K+ channels),而影響GABAA受體的活性增加。然而,對於氟吡汀以其結構相關的化合物是否可對於類運動神經元細胞上的其他類型的離子通道造成影響,目前仍然有許多疑問。因此,在本篇研究中,我們利用氟吡汀及其他相關化合物來探討對於類運動神經元中上離子通道的作用。細胞膜片箝制技術(patch-clamp technique)用於偵測氟吡汀於類運動神經元細胞(NSC-34 and NG108-15 )中電生理的效用。結果顯示,在NSC-34細胞中氟吡汀使延遲糾正鉀離子電流減少並呈現濃度依賴性,另外也同時提高失活速率。基於公式進一步算出加入氟吡汀後解離常數大約為9.8 μM。然而,加入是NMDA (30 μM)、gabazine (10 μM)亦或是linopirdine (10 μM)並不能回復氟吡汀所造成延遲糾正鉀離子電流的影響。其次,氟吡汀使得不激活曲線向過極化電位平移,然而對其斜率並沒有顯著改變。此外,我們也測量氟吡汀對於M型鉀離子通道是否有效,與先前研究相似,氟吡汀同樣會使M型鉀離子電流增加並且在不影響離子通道進出電荷的情況下,氟吡汀使得激活曲線向左平移。而在另一種類運動神經元細胞NG108-15,結果顯示氟吡汀會使M型鉀離子電流減少並且提高延遲糾正鉀離子電流的不激活速率。總結來說,於本篇研究我們發現氟吡汀會減少延遲糾正鉀離子電流並且同時也會影響M型鉀離子電流,使得M型鉀離子電流增加,在兩者相互之間的作用下最後會使得類運動神經元細胞放電頻率降低。此外,先前研究指出氟吡汀可能會受到GABA或NMDA受體的影響,然而與本篇研究結果顯示氟吡汀造成延遲糾正鉀離子電流的減少並不會受到GABA或NMDA受體的作用。綜合以上結果,氟吡汀的作用可能不單純先前研究指出M型鉀離子通道的影響,另外也會同時受到延遲糾正鉀離子通道的作用。

    Flupirtine (Flu) is recognized to be a triaminopyridine that functions as a centrally acting nonopioid analgesic agent with muscle-relaxant and neuroprotective properties. It has been used in multiple actions involving neuronal overexcitability such as epilepsy and neuropathic pain. Previous studies had been reported that Flu might acts as an antagonist of NMDA receptor and show the ability to facilitate the activity of GABAA receptors accompanied by increase stimulation of M-type K+ channels. However, whether Flu and its structurally related compounds can produce any effects on other types of ion current in motor neurons remains largely unclear. In this study, we sought to evaluate possible effects of Flu and other related compounds on ion currents in two types of motor neuron-like cells, the NSC-34 and NG108-15 cells. The patch-clamp technique was applied to investigate the electrophysiological effects in these cells. During cell exposure to Flu, The amplitude of IK(DR) in NSC-34 cells were significantly reduced accompany with the increasing the inactivation rate. Based on minimal binding scheme, the dissociation constant for Flu-mediated increase of IK(DR) inactivation rate was about 9.8 μM. However, neither NMDA (30 μM), gabazine (10 μM), nor linopirdine (10 μM) reversed Flu-induced changes in IK(DR) inactivation. Moreover, the addition of Flu shift the inactivation curve to more hyperpolarized potentials with no change in the slope factor. Consistent with previous observation, the amplitude of M-type K+ current (IK(M)) were increase and produced a leftward shift in the activation curve of IK(M) with no apparent change in the gating charge of this current. In another neuronal cells (NG108-15), addition of Flu would decrease IK(DR) amplitude and enhanced the inactivation rate of IK(DR). Taken together, the results clearly suggest that Flu would produce inhibitory actions on IK(DR) as well as stimulate IK(M), hence decreasing the firing activity on motor neurons if similar results occur in vivo. In addition, Flu-induced block of IK(DR) is not associated with binding to GABA or NMDA receptors and the effects of this compound on K+ channels apparently are not limited to its action on M-type K+ channels.

    中文摘要 5 Abstract 7 Introduction 11 Materials and methods 14 Cell preparations 14 Drugs and solutions 14 Electrophysiological measurements 15 Data recordings and analyses 16 RNA Isolation and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 18 Western blot analysis 19 Immunofluorescence staining 20 KCNC1 and KCNQ5-siRNAs transfection 21 Results 22 Effect of Flu on Delayed Rectifier K+ Current (IK(DR)) in NSC-34 Cells 22 Kinetic Studies of Flu-Induced Block of IK(DR) 23 Effect of N-Methyl-D-Aspartate (NMDA) or Gabazine on Flu-Induced Changes in IK(DR) 24 Effect of Flu on the steady-state inactivation of IK(DR) in NSC-34 neuronal cells 25 Effect of Flu-Induced Increase in Cumulative Inhibition of IK(DR) Inactivation 25 Stimulatory Effect on IK(M) in NSC-34 Neuronal Cells 26 Effect of Flu on IK(DR) in NG108-15 Neuronal Cells 27 Identification of the presence of KCNC1 and KCNQ gene expression in NSC-34 and NG108-15 cells 28 Immunofluorescence results 29 Discussion 30 References 34 Figures 37 Figure Legends 49 Appendix 55

    Appleby, B. S. and C. G. Lyketsos (2011). "Rapidly progressive dementias and the treatment of human prion diseases." Expert Opin Pharmacother 12(1): 1-12.
    Chen, H., B. S. Jassar, et al. (1994). "Phorbol ester-induced M-current suppression in bull-frog sympathetic ganglion cells: insensitivity to kinase inhibitors." Br J Pharmacol 113(1): 55-62.
    Harish, S., K. Bhuvana, et al. (2012). "Flupirtine: Clinical pharmacology." J Anaesthesiol Clin Pharmacol 28(2): 172-177.
    Hirano, K., K. Kuratani, et al. (2007). "KV7.2-7.5 voltage-gated potassium channel (KCNQ2-5) opener, retigabine, reduces capsaicin-induced visceral pain in mice." Neurosci Lett 413(2): 159-162.
    Hsu, Y. Y., C. S. Chen, et al. (2012). "Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC-34 motor neuron-like cells." Eur J Pharm Sci 46(5): 415-425.
    Huang, C. W., C. C. Huang, et al. (2008). "The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons." Int J Neuropsychopharmacol 11(5): 597-610.
    Jakob, R. and J. Krieglstein (1997). "Influence of flupirtine on a G-protein coupled inwardly rectifying potassium current in hippocampal neurones." Br J Pharmacol 122(7): 1333-1338.
    Klinger, F., P. Geier, et al. (2012). "Concomitant facilitation of GABAA receptors and KV7 channels by the non-opioid analgesic flupirtine." Br J Pharmacol 166(5): 1631-1642.
    Lin, M. W., Y. J. Wang, et al. (2008). "Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells." Neuropharmacology 54(6): 912-923.
    Meves, H., J. R. Schwarz, et al. (1999). "Separation of M-like current and ERG current in NG108-15 cells." Br J Pharmacol 127(5): 1213-1223.
    Muller, W. E., J. L. Laplanche, et al. (2000). "Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease." Mech Ageing Dev 116(2-3): 193-218.
    Muller, W. E., F. J. Romero, et al. (1997). "Protection of flupirtine on beta-amyloid-induced apoptosis in neuronal cells in vitro: prevention of amyloid-induced glutathione depletion." J Neurochem 68(6): 2371-2377.
    Osborne, N. N., C. Cazevieille, et al. (1998). "Flupirtine, a nonopioid centrally acting analgesic, acts as an NMDA antagonist." Gen Pharmacol 30(3): 255-263.
    Otto, M., L. Cepek, et al. (2004). "Efficacy of flupirtine on cognitive function in patients with CJD: A double-blind study." Neurology 62(5): 714-718.
    Peretz, A., N. Degani, et al. (2005). "Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties." Mol Pharmacol 67(4): 1053-1066.
    Ryu, H., G. S. Jeon, et al. (2011). "Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS." Lab Invest 91(3): 342-352.
    Schwarz, M., F. Block, et al. (1994). "N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats." Neuroreport 5(15): 1981-1984.
    Su, T. R., W. S. Zei, et al. (2012). "The Effects of the KCNQ Openers Retigabine and Flupirtine on Myotonia in Mammalian Skeletal Muscle Induced by a Chloride Channel Blocker." Evid Based Complement Alternat Med 2012: 803082.
    Wang, L. Y., L. Gan, et al. (1998). "Contribution of the KV3.1 potassium channel to high-frequency firing in mouse auditory neurones." J Physiol 509 ( Pt 1): 183-194.
    Wladyka, C. L. and D. L. Kunze (2006). "KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons." J Physiol 575(Pt 1): 175-189.
    Wu, S. N., B. S. Chen, et al. (2008). "Contribution of slowly inactivating potassium current to delayed firing of action potentials in NG108-15 neuronal cells: experimental and theoretical studies." J Theor Biol 252(4): 711-721.
    Wu, S. N., Y. K. Lo, et al. (2001). "Rutaecarpine-induced block of delayed rectifier K+ current in NG108-15 neuronal cells." Neuropharmacology 41(7): 834-843.
    Wu, S. N., C. C. Yeh, et al. (2012). "Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells." Acta Physiol (Oxf) 206(2): 120-134.
    Xiong, Q., Z. Gao, et al. (2008). "Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds." Trends Pharmacol Sci 29(2): 99-107.

    下載圖示 校內:2016-08-27公開
    校外:2016-08-27公開
    QR CODE