| 研究生: |
吳珮奕 Wu, Pei-I |
|---|---|
| 論文名稱: |
Exploring Gen Z’s Use of ChatGPT Through
SOR and Social Cognitive Perspectives Exploring Gen Z’s Use of ChatGPT Through SOR and Social Cognitive Perspectives |
| 指導教授: |
林彣珊
Lin, Wen-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際經營管理研究所 Institute of International Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | Z 世代 、刺激-有機體-反應 (S-O-R) 框架 、人工智慧自我效能 、行為意圖 |
| 外文關鍵詞: | Generation Z, Stimulus-Organism-Response (S-O-R) Framework, AI Self-Efficacy, Behavioral Intention |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討了 Z 世代如何與人工智慧工具(特別是 ChatGPT)交互。作為數位技術的頻繁使用者,Z 世代越來越依賴人工智慧來增強團隊合作、生產力和效率。本研究採用刺激-有機體-反應(S-O-R)模型、數位公民理論和社會認知理論三個理論框架,以突出使用者通過使用人工智慧工具培養的自信心、有效性和批判性思維能力。該問卷被分發給臺灣的 Z 世代參與者樣本 (N = 281),他們在課堂和工作場所環境中都有使用 ChatGPT 的經驗。結果顯示,社會影響力對技術技能的發展做出了積極貢獻,而社會比較則增強了 Z 世代對人工智慧使用的批判性視角。技術技能和批判性視角這兩種因素顯著增強了人工智慧的自我效能感。反過來,更高水準的人工智慧自我效能感直接預測了繼續使用 ChatGPT 的意圖和基於團隊的環境中工作績效的提高。這些發現強調了社會和心理因素對於促進 Z 世代在協作環境中有意義、自信和有效的人工智慧採用的重要性。
This study examines how Generation Z interacts with AI tools, specifically ChatGPT. As frequent users of digital technology, Gen Z increasingly relies on AI to enhance teamwork, productivity, and efficiency. This research employs three theoretical frameworks: the Stimulus-Organism-Response (S-O-R) model, Digital Citizenship Theory, and Social Cognitive Theory, to highlight users’ self-confidence, effectiveness, and critical thinking skills developed through the use of AI tools. The questionnaire was distributed to a sample of Gen Z participants in Taiwan (N = 281) with experience using ChatGPT in both classroom and workplace settings. The results revealed that social influence positively contributed to the development of technical skills, while social comparison enhanced Gen Z’s critical perspective toward AI use. These two factors, technical skills and critical perspective, significantly strengthened AI self-efficacy. In turn, higher levels of AI self-efficacy directly predicted both the intention to continue using ChatGPT and improved perceived work performance in team-based environments. These findings emphasize the importance of both social and psychological factors in fostering meaningful, confident, and effective AI adoption among Gen Z in collaborative environments.
Abadie, A., Chowdhury, S., & Mangla, S. K. (2024). A shared journey: Experiential perspective and empirical evidence of virtual social robot ChatGPT's priori acceptance. Technological Forecasting and Social Change, 201(0), 123-202.
Alayacyac, J. R. S., Regidor, J. C., Caballo, J. H. S., Abellanosa, J. E., & Monaghan, G. J. G. (2024). Computer self-efficacy and effectiveness of quipper learning management system. American Journal of Smart Technology and Solutions, 3(1), 17-21.
Ateş, H., & Gündüzalp, C. (2025). The convergence of GETAMEL and protection motivation theory: A study on augmented reality-based gamification adoption among science teachers. Education and Information Technologies.
Babu, M. A., Yusuf, K. M., Eni, L. N., Jaman, S. M. S., & Sharmin, M. R. (2024). ChatGPT and generation ‘Z’: A study on the usage rates of ChatGPT. Social Sciences & Humanities Open, 10(0), 101-163.
Bai, L., Liu, X., & Su, J. (2023). ChatGPT: The cognitive effects on learning and memory. Brain‐X, 1(3), 30.
Balakrishnan, J., Abed, S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services? Technological Forecasting and Social Change, 18(0), 121-692.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, the United States: W H Freeman.
Biloš, A., & Budimir, B. (2024). Understanding the Adoption Dynamics of ChatGPT among Generation Z: Insights from a Modified UTAUT2 Model. Journal of Theoretical and Applied Electronic Commerce Research, 19(2), 863-879.
Bradshaw, A. (2017). Critical pedagogy and educational technology. New York, the United States: Rouledge.
Chan, C., & Colloton, T. (2024). Generative AI in higher education: The ChatGPT effect.
Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1), 60.
Chen, G., Fan, J., & Azam, M. (2024). Exploring artificial intelligence (AI) chatbots adoption among research scholars using unified theory of acceptance and use of technology (UTAUT). Journal of Librarianship and Information Science, 0(0).
Choi, M., Glassman, M., & Cristol, D. (2017). What it means to be a citizen in the internet age: Development of a reliable and valid digital citizenship scale. Computers & Education, 107(0), 100-112.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, the United States: Lawrence Erlbaum Associates, Inc.
Dass, A., & Kumar, P. (2024). Critical digital citizenship: Its understanding and implication in education. Migration Letters, 21(5), 998-1006.
Dijkstra, T. (2010). Latent variables and indices: herman wold’s basic design and partial least squares Handbook of Partial Least Squares. Berlin: Springer.
Duong, C. D. (2024). Modeling the determinants of HEI students’ continuance intention to use ChatGPT for learning: a stimulus–organism–response approach. Journal of Research in Innovative Teaching & Learning, 17(2), 391-407.
Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2003). Empirical testing of a model of online store atmospherics and shopper responses. Psychology & Marketing, 20(2), 139-150.
Escobar-Rodríguez, T., & Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43(0), 70-88.
Farmer, L. (2010). Teaching Digital Citizenship. International Conference on Education and Educational Technologies.
Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117-140.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452.
Frison, E., & Eggermont, S. (2016). “Harder, better, faster, stronger”: Negative comparison on Facebook and adolescents' life satisfaction are reciprocally related. Cyberpsychology, Behavior, and Social Networking, 19(0).
Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Communications of the Association for Information Systems, 16(0), 91-109.
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
Glassman, M., & Kang, M. J. (2012). Intelligence in the internet age: The emergence and evolution of open source intelligence (OSINT). Computers in Human Behavior, 28(0), 673-682.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
Gu, M., Huang, C., & Lee, J. (2023). Investigating university students’ digital citizenship development through the lens of digital literacy practice: A Translingual and transemiotizing perspective. Linguistics and Education, 77(0), 101226.
Hair, J., Hult, G. T. M., Ringle, C., Sarstedt, M., Danks, N., Ray, S., & St, C. (2022). Book Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Switzerland: Springer.
Hair, J., Sarstedt, M., Ringle, C., & Mena, J. (2012). An Assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(0), 414–433.
Hays, L., Jurkowski, O., & Sims, S. (2023). ChatGPT in K-12 Education. TechTrends, 68(0).
Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling. 6(0), 1-55.
Jacoby, J. (2002). Stimulus-organism-response reconsidered: An evolutionary step in Modeling (Consumer) Behavior. Journal of Consumer Psychology, 12(1), 51-57.
Jingwei He, A., Zhuoni, Z., Pritish, A., & and McMinn, S. (2024). Embracing generative artificial intelligence tools in higher education: a survey study at the Hong Kong University of science and technology. Journal of Asian Public Policy, 18(2), 1-25.
Jöreskog, K. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36(0), 109-133.
Kassa, B. Y., & Worku, E. K. (2025). The impact of artificial intelligence on organizational performance: The mediating role of employee productivity. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100474.
Kim, M. J., Lee, C.-K., & Jung, T. (2020). Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-response model. Journal of Travel Research, 59(0), 69-89.
Kim, Y., Dykema, J., Stevenson, J., Black, P., & Moberg, D. (2019). Straightlining: Overview of measurement, comparison of indicators, and effects in mail–web mixed-mode surveys. Social Science Computer Review, 37(0), 214-233.
Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86(0), 104-330.
Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association of Information Systems, 13(0).
Korchak, A., Al Murshidi, G., Getman, A., Raouf, N., Arshe, M., Al Meheiri, N., . . . Costley, J. (2025). The role of social influence in generative artificial intelligence ChatGPT adoption intentions among undergraduate and graduate students. Innovations in Education and Teaching International, 0(0), 1-15.
Lee, S. K., Kavya, P., & Lasser, S. C. (2021). Social interactions and relationships with an intelligent virtual agent. International Journal of Human-Computer Studies, 150(0), 102-608.
Liang, J., Wang, L., Luo, J., Yan, Y., & Fan, C. (2023). The relationship between student interaction with generative artificial intelligence and learning achievement: Serial mediating roles of self-efficacy and cognitive engagement. Front Psychol, 14(0), 128-392. doi: 10.3389/fpsyg.2023.1285392
Limayem, M., Hirt, S., & Cheung, C. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(0), 705-737.
Lo, C. K., Hew, K. F., & Jong, M. S.-y. (2024). The influence of ChatGPT on student engagement: A systematic review and future research agenda. Computers & Education, 219(0), 105-100.
Lv, N., & Li, Z. (2024). The effects of blended learning environment on college students’ learning effectiveness: Exploring the role of behavioral intentions and self-efficacy through the UTAUT2 model. SAGE Open, 14(2). doi: 10.1177/21582440241251604
Malik, A. (2024). A study on the relationship of artificial intelligence applications in HR processes for assessing employee engagement, performance, and job security. International Review of Management and Marketing, 14(5), 216-221.
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. Cambridge, the United States: The MIT Press.
Mollen, A., & Wilson, H. (2010). Engagement, telepresence and interactivity in online consumer experience: Reconciling scholastic and managerial perspectives. Journal of Business Research, 63(9), 919-925.
Mollick, E., & Mollick, L. (2023). Using AI to implement effective teaching strategies in classrooms: five strategies, including prompts. SSRN Electronic Journal.
Oc, Y., Gonsalves, C., & Quamina, L. T. (2024). Generative AI in Higher Education Assessments: Examining Risk and Tech-Savviness on Student’s Adoption. Journal of Marketing Education, 47(2), 138-155.
Park, S. Y., & Baek, Y. M. (2018). Two faces of social comparison on Facebook: The interplay between social comparison orientation, emotions, and psychological well-being. Computers in Human Behavior, 79(0), 83-93.
Prasetiyo, W. H., Naidu, N., Sari, B., Mustofa, R., Rahmawati, N., Pambudi, G., & Hidayat, O. (2021). Survey data of internet skills, internet attitudes, computer self-efficacy, and digital citizenship among students in indonesia. Data in Brief, 39(0), 107-569.
Puiu, S. (2017). Generation Z- An educational and managerial perspective. Revista tinerilor economişti, 29(0), 62-72.
Rahman, M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(0), 57-83.
Ribble, M., & Bailey, G. (2007). Digital citizenship in schools. Washington DC.
Russell, S., & Norvig, P. (2010). Artificial intelligence, global edition : A modern approach (pp. 11-68).
Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115.
Sekaran, U., Bougie, Roger. . (2016). Research methods for business : a skill-building approach (7th ed.). Wiley & Sons: West Sussex.
Smith, R. (2000). Assimilative and contrastive emotional reactions to upward and downward social comparisons. In J. Suls, Wheeler, L. (Ed.), Handbook of Social Comparison (pp. 173-200). Boston, MA: Springer.
Suls, J., & Wheeler, L. (2000). A Selective History of Classic and Neo-Social Comparison Theory Handbook of Social Comparison (pp. 3-19). Boston, MA: Springer
Sun, J., Li, W.-D., Li, Y., Liden, R. C., Li, S., & Zhang, X. (2021). Unintended consequences of being proactive? Linking proactive personality to coworker envy, helping, and undermining, and the moderating role of prosocial motivation. Journal of Applied Psychology, 106(2), 250-267.
Turner, A. (2015). Generation Z: Technology and social interest. The Journal of Individual Psychology, 71(0), 103-113.
Urban, M., Děchtěrenko, F., Lukavský, J., Hrabalová, V., Svacha, F., Brom, C., & Urban, K. (2024). ChatGPT improves creative problem-solving performance in university students: An experimental study. Computers & Education, 215(0), 105-301.
Vafaei-Zadeh, A., Nikbin, D., Wong, S. L., & Hanifah, H. (2024). Investigating factors influencing AI customer service adoption: an integrated model of stimulus–organism–response (SOR) and task-technology fit (TTF) theory. Asia Pacific Journal of Marketing and Logistics, 37(6), 1465-1502.
van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226.
Varma, A., Pereira, V., & Patel, P. (2024). Artificial intelligence and performance management. Organizational Dynamics, 53(0), 101-307.
Venkatesh, V., Thong, J., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(0), 328–376.
Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: Insights from a meta-analysis. Humanities and Social Sciences Communications, 12(1), 621.
Wang, Y. R., Yang, W. T., Xiong, Z. H., Zhao, Y. P., Quek, T. Q. S., & Han, Z. (2024). Harnessing the power of AI-generated content for semantic communication. Ieee Network, 38(5), 102-111.
White, J., Brandt, D., Söffner, J., & Stapleton, L. (2023). Artificial thinking and doomsday projections: A discourse on trust, ethics and safety. Ai & Society, 38(6), 2133-2139.
Zhang, C., Zhu, W. D., Dai, J., Wu, Y., & Chen, X. L. (2025). Drivers and concerns of adopting Artificial Intelligence and managerial accounting. Accounting and Finance, 0(0), 33.
校內:2026-07-31公開