簡易檢索 / 詳目顯示

研究生: 陳依伸
Chen, Yi-Shen
論文名稱: 太陽能聚焦用菲尼爾透鏡表面結構設計
Design of Surface Structures on Fresnel Lens Used for Solar Energy Concentration
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 太陽光聚焦菲尼爾透鏡表面結構最佳化
外文關鍵詞: surface structures, solar energy concentration, Fresnel lens, optimization
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃針對應用於太陽能聚焦用菲尼爾透鏡的表面結構進行分析設計。一般凸透鏡透鏡厚度較大,因此重量無法減輕,不適用於大面積的聚焦,本文利用分段直線法與細直線分段曲線法、最佳化分段曲線法等方法設計菲尼爾透鏡,探討各種影響幾何聚光倍率、聚光效率的因素。研究結果發現中小尺寸菲尼爾透鏡(約半徑150 mm以下)利用分段直線法與細直線分段曲線法設計較為適宜,大尺寸菲尼爾透鏡(透鏡半徑500 mm)利用最佳化分段曲線法設計可以得到較高的幾何聚光倍率與聚光效率。
    此外,本研究亦探討各種不同的透鏡設計對於太陽光入射角度的敏感度。發現菲尼爾透鏡的入射角敏感性在正負1.5。時,固定觀測面積可維持幾何聚光倍率為100倍,聚光效率仍達67%以上,若觀測面積隨焦點移動測量,聚光效率仍可以維持90%。

    This study is concerned with the design of surface structures on Fresnel lens used for solar energy concentration. The lens thickness of the general aspherical lens is generally large so that the weight of it is not able to br reduced. Therefore, it is not suitable for large-scale lens. The concentration efficiency and the geometrical concentration ratio are of major concerns in this study. A piecewise straight-line method and a short-straight piecewise curve line method, and an optimization method of piecewise curve line method are proposed to design the Fresnel lens. Results show that the piecewise straight line method and the short-straight piecewise curve line method are particularly applicable for, the small and medium-scale Fresnel lens (the radius under 150 mm). And, the optimization method of piecewise curve line method is suitable to design the larger-scale Fresnel lens. These approaches lead to satisfactory energy efficiency and geometrical concentrate ratio.
    In addition, in this study the sensitivity of Fresnel lens to the incident angle is evaluated. It is found that when the incident angle is 1.5。 and the geometrical concentration ratio is fixed at 100 times, the concentration efficiency reaches a value higher than 67%. When the irradiance map is allowed to move with focus point, the concentration efficiency can still retain a value of approximately 90%.

    摘要 .............................................. Ⅰ ABSTRACT ........................................... Ⅱ 誌謝 .............................................. Ⅲ 目錄 .............................................. Ⅳ 表目錄 .............................................. Ⅶ 圖目錄 .............................................. Ⅷ 符號索引 .............................................. ⅩⅢ 第一章 緒 論....................................... 1 1-1 前言.............................................. 1 1-2 菲尼爾透鏡介紹.................................... 2 1-3 研究動機.......................................... 4 1-4 論文內容.......................................... 5 第二章 光學基本原理................................. 6 2-1 幾何光學原理...................................... 6 2-2 非球面透鏡........................................ 9 2-3 造鏡公式.......................................... 10 2-4 光學設計流程...................................... 11 第三章 光跡分析軟體介紹............................. 13 3-1 SPEOS前處理...................................... 13 3-2 SPEOS後處理...................................... 14 3-3 計算方法介紹...................................... 15 第四章 最佳化理論....................... ........... 17 4-1 共軛梯度法(CGM).................................. 17 4-2 簡易共軛梯度法(SCGM)............................. 20 第五章 菲尼爾透鏡設計法............................. 22 5-1 凸透鏡理論設計.................................... 22 5-1-1 非球面透鏡公式................................. 22 5-1-2 直線分段構成曲線法............................. 23 5-1-3 整體曲線最佳化................................. 25 5-2 菲尼爾透鏡理論設計.............................. 26 5-2-1 分段直線法..................................... 26 5-2-2 分段曲線法..................................... 29 5-2-2-1 細直線構成分段曲線.......................... 29 5-2-2-2 最佳化分段曲線.............................. 30 5-3 焦距與菲尼爾透鏡半徑關係....................... 31 第六章 結果與討論................................... 34 6-1 凸透鏡聚光模擬.................................... 34 6-2 菲尼爾透鏡聚光模擬比較............................ 36 6-3 入射角度與聚光效率之關係.......................... 40 第七章 結論與未來研究方向........................... 42 參考文獻.................................................. 111 自述...................................................... 114

    [1] T. Tag, “The Early Development of the Fresnel Lens,” U.S. Lighthouse Society’s The Keeper’s Log, 2005.

    [2] Fresnel Technologies Inc, “High Quality Fresnel Lenses in a Variety of Sizes& Focal Lengths,” http://www.Fresneltech.com, 2001.

    [3] 葉乃嘉,曲面式Fresnel透鏡太陽能集光器之幾何光學模式,明道學術論壇,2007年。

    [4] 駱志龍,Fresnel透鏡設計及應用,中央大學光電工程研究所,民國80年7月。

    [5] A. Davis, F. Kuhnlenz, “Optical Design Using Fresnel Lenses,” Optic & Photonic , No.4., December 2007.

    [6] 許阿娟、何承舫、張國輝、陳志隆,光學系統設計實作, 成功大學物理系,民國90年。

    [7] Erwin Delano, ” Primary Aberration Contributions for Curved Fresnel Surfaces,” Appled Optics, Vol. 18, NO. 24, pp. 4187, 1979.

    [8] R. Leutz, A. Suzaki, A. Akisawa, T. Kashiwagi, “Developments and Designs of Solar Engineering Fresnel Lenses.,” Proceedings Symposium on Energy Engineering, Vol.2, 759-765, ISBN 1567001327, 9-13 January, Hong Kong,2000.

    [9] 葉上平,用於III-V族太陽能電池之高效率且均勻化聚光鏡之研究,國立中央大學光電科學與工程學研究所,民國96年。

    [10] Dr.-Ing. Hani Mahmoud EI Nokrashy,” New Technology Produces Economic Solar-Electricity Combined with Seawater Desalination,” http://www.eeaa.gov.eg/english/main/Env2003/Day3/Energy/nokrashy.nokrashy.pdf.

    [11] Y. Tripanagnostopoulos, Ch. Siabekou, J.K. Tonui, “The Fresnel Lens Concept for Solar Control of Buildings, Passive and Low Energy Cooling for the Built Environment,” International Conference of Passive and Low Energy Cooling for the Built Environment , pp.977-982, May 2005.
    [12] Ausra, ”An Introduction to Solar Thermal Electric Power,” http://www.ausra.com/.

    [13] 莊榮瀚,太陽追蹤器之設計與測試,中央大學能源研究所,民國97年。

    [14] F.L. Pedrotti, L.S. Pedrotti, L.S. Pedrotti, Introduction to Optics, 3th edition, Addison-Wesley,2006.

    [15] 許文松,環曲面透鏡的光線追蹤與應用,成大機械工程研究所,民國97年。

    [16] R. Winston, J.C. Minano, P.G. Benitez, Nonimaging Optics, Elsevier Science & Technology Books,Academic Press,2004.

    [17] R. Leutz, A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators, Springer Verlag Heidelberg, 2001.

    [18] 王溫良,車燈電腦輔助模擬分析,財團法人車輛研究中心,民國93年。

    [19] 鄭伊凱,非球面透鏡的最佳化與分析,成大物理研究所,民國90年。

    [20] E. Hecht, Optics, 4th edition, Addison Wesley Longman, Inc., New York, 2002.

    [21] 林欣靜,應用四元素切割光子於動態場景之全域照度估計,中原大學資訊工程研究所,民國92年。

    [22] C.H. Cheng, M.H. Chang, “A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data,” Numerical Heat Transfer, Part B, vol. 43, pp. 1-19, 2003.

    [23] M.R. Hestenes, E. Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-436, 1952.

    [24] R. Fletcher, C.M. Reeves, “Function Minimization by Conjugate Gradients,” Computer Journal, vol. 7, pp. 149-154, 1964.

    [25] I. Fried, J. Metzler, “SOR vs Conjugate Gradients in a Finite Element Discretization,” International Journal for Numerical Methods in Engineering, vol. 12, pp. 1329-1342, 1978.

    [26] R.L. Burden, J.D. Faires, Numerical Analysis, 8th edition, Thomson, 2005.

    下載圖示 校內:立即公開
    校外:2009-08-11公開
    QR CODE