研究生: |
胡國祥 Hu, Guo-Shiang |
---|---|
論文名稱: |
Si/Al/Si三明治結構薄膜經退火後產生金屬誘發效果對結晶性、載子遷移率與導電性之影響 Effect of the Sandwich Designs of the Si/Al/Si Film in the Specimens on Metal-induced Si Crystallization Efficiency,Carrier Mobility and Electrical Conductivity after Annealing |
指導教授: |
林仁輝
Lin, Jen-Fin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 金屬誘發 、低溫退火 、晶粒大小 、載子遷移率 、應力梯度 |
外文關鍵詞: | Metal-induced, low-temperature annealing, grain size, carrier mobility, stress gradients |
相關次數: | 點閱:93 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用快速熱退火製程讓奈米鋁金屬誘發矽結晶,共準備15個試片,試件結構為a-Si/Al/a-Si/SiO2/Glass,設計不同厚度的a-Si/Al/a-Si三明治結構可以增加鋁元素往兩邊矽層擴散的效率,導致載子遷移率提高。熱退火後影響鋁誘發矽結晶百分比的參數包括:改變試片頂層矽、中間層鋁、底層矽厚度與退火溫度。薄膜內鋁的擴散情形也是探討重點,其中鋁元素向左右兩邊矽層的擴散情形,隨著最大壓應力變化 ( )增加而鋁擴散深度增加。定義新參數PC,PC值為用來判斷薄膜內矽結晶品質好壞,其值為矽結晶百分比與矽平均晶粒大小的乘積(Product, PC),PC值隨著退火後應力變化( )增加而提高,且對於有孔洞的試片而言載子遷移率與退火後應力變化兩者呈線性關係。若要避免薄膜產生孔洞,則薄膜含鋁百分比( )增加時,退火後應力變化( )也要跟著提高。產生孔洞的兩個必要條件為退火溫度足夠高及薄膜含鋁百分比( )足夠大。當薄膜具有孔洞時,增加退火後應力變化( )可以降低薄單位面積孔隙率膜孔隙率(R*),單位面積孔隙率下降可導致載子遷移率提高。合適的三明治結構設計能在低溫(400℃)製程下製作多晶矽薄膜,並可應用於薄膜太陽能電池或主動矩陣發光二極體。
In the present study, 15 kinds of the a-Si/Al/a-Si/SiO2/Glass specimen were prepared in order to investigate the Al-induced Si crystallizations after applying annealing. The composite film of a-Si/Al/a-Si is arranged in the sandwich form in order to improve the efficiency of Al diffusions into its two adjacent Si layers, and thus resulting in the increase in the specimen’s carrier mobility. Si crystallizations were carried out at the conditions including the changes in the thicknesses of the top and bottom Si layer and the middle Al film, and the annealing temperature. Al diffusion depths on its two sides is increased with increasing the max compressive stress change in the diffusion direction. The degree of Si crystallizations in terms of the product (PC) of the Si crystalline fraction and the mean grain size. The PC value is elevated by increasing the ( ), and specimen’s carrier mobility is linearly increased by increasing ( ). In the specimens without nanovoids, the ( ) value is presented to be increased proportional to . A sufficiently high annealing temperature in combination with sufficiently large become the prerequisite conditions of nanovoids created in the composite film. The increases in the ( ) leads to the reduction of R* value, thus resulting in the elevation of specimen’s carrier mobility. Appropriate thickness designs for the sandwich structure can achieve high Si crystallizations even operating the annealing process as low as 400 °C. High-quality poly-Si is an essential material for high-efficiency thin-film solar cells or AMOLED.
1.I.M. Chan and Y. C. Yeh, “ solar cell”, Indust. Mater. Magaz, (2008)
2.D.M. Chapin, C.S. Fuller, G.L. Pearson,“A new silicon p‐n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, Vol. 25, no. 5, pp. 676, (1954)
3.D.C. Raynolds, G. Leies, L.L. Antes and R.E. Marburge, “Photovoltaic effect in cadmium sulfide”, Physical Review, Vol. 96, pp. 533-534, (1954)
4.戴寶通,鄭晃忠,“太陽能電池技術手冊”,台灣電子材料與元件協會, (2008)
5.C. Spinella and Salvatore Lombardo, “Crystal grain nucleation in amorphous silicon”, Journal of Applied Physics, Vol. 84, no. 10, pp. 5383-5414, (1998)
6.S. Im. James, H. J. Kim and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amporphous silicon films”, Apply Physics Letter, Vol. 63, no. 14, pp. 1969-1971, (1993)
7.F. A. Quli and J. Singh, “Transmission electron microscopy studies of metal-induced crystallization of amorphous silicon”, Materials Science and Engineering, Vol. 67, no. 3, pp. 139-144, (1999)
8.A.M. Al-dhafiri, H.A. El-Jammal, A. Al-Shariah, H.A. Naseem and W.D. Brown, “Influence of nitrogen trifluoride and nitrogen plasma treatment on the formation of hillocks during aluminum induced crystallization of a-Si:H”, Thin solid films, Vol.422, pp.14, (2002)
9.林明獻 “太陽電池技術入門”, 全華圖書股份有限公司, (2007)
10.H. Kim, G. Lee, D. Kim and S. H. Lee, “A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization”, Current Applied Physics, Vol. 2, no. 2, pp. 129-133, (2002)
11.K. Niira, H. Senta, H. Hakuma, M. Komoda, H. Okui, K. Fukui, H. Arimune and K. Shirasawa, “Thin film poly-Si solar cells using PECVD and Cat-CVD with light confinement structure by RIE”, Solar Energy Materail Society, Vol. 74, no. 1, pp. 247-253, (2002)
12.T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima and K. Miyata, ”Crystallization of LPCVD silicon films by low temperature annealing”, Journal of Electrochemical Society, Vol. 136, no. 4, pp. 1169-1173, (1989)
13.J. D. Hwang, J. Y. Chang, and G. J. Chen, “Two-step annealing for nickel-induced crystallization of amorphous silicon films”, Journal of the Electrochemical Society Vol. 152, no. 6, pp. G487-G490, (2005)
14.G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M.A. Hasan, “Al induced crystallization of a-Si”, Journal of Applied Physics Vol. 69, no. 9, pp. 6394-6399, (1991)
15.O. Nast, S. Brehme, D. H. Neuhaus, S. R. Wenham, “Polycrystalline silicon thin films on Glass by aluminum-induced crystallization”, IEEE Transactions on Electron Devices, Vol. 46, no. 10, pp. 2062-2068, (1999)
16.J. Schneider, R. Heimburger, J. Klein, M. Muske, S. Gall and W. Fuhs, “Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles”,Thin Solid Films,Vol.487,no.1-2,pp.107-112, (2005)
17.J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The science and design of engineering materials”, Mc-Graw Hill Science 2 edition, (2000)
18.莊達人, “VLSI製造技術”, 高立圖書有限公司, (2003)
19.M. S. Ashtikar and G. L. Sharma, “Silicide-mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum”, Journal of Applied Physics, Vol. 78, no.2, p. 913, (1995)
20.A. G. Aberle, P. I. Widenborg, A. Straub and N. P. Harder, “Polycrystalline silicon on Glass thin-film solar cell research at UNSW using the seed layer concept”, 3rd World Conference on Photovoltaic Energy Conversion, p.1194, (2003)
21.P. I. Widenborg and A. G. Aberle, “Surface morphology of poly-Si films made by aluminum-induced crystallization on Glass substrates”, Journal of Crystal Growth, Vol. 242, no. 3-4, pp. 270-282, (2002)
22.O. Prache, “Active matrix molecular OLED microdisplays” , Dsiplays, Vol. 22, no. 2, pp. 49-56, (2001)
23. K. L. Chopra, “Mechanical effects in thin films, in Thin Film Phenomena”, p.266, (1969)
24.白木 靖寬, 吉田 貞史 編著 & 王建義 編譯, "薄膜工程學", 全華科技圖書股份有限公司, (2006)
25.田春林,李正中,“光學薄膜應力與熱膨脹係數量測之研究” , 國立中央大學-光電科學研究所博士論文, p.14, (2000)
26.G.G. Stoney, “The tension of metallic films deposited by electrolysis proceedings of the royal society of lodeon series A”, Mathematical and Physical Sciences, Vol.82, no.533, p.172, (1909)
27.P.A. Flinn, D.S. Gardner and W.D. Nix, “Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history”, IEEE Transactions on Electron Devices, Vol. ED-34, no. 3, p. 689, (1987)
28.M. Hershkovitz, I. A. Blech and Y. Komem, “Stress relaxation in thin aluminum films”, Thin Solid Films, Vol. 130, pp.87, (1985)
29.林麗娟,“X光繞射原理及其應用”,工業材料86期, (1994)
30.Erlacher,“Diffrac leptos7”, BRUKER AXS GmbH, (2009)
31.G. E. Dieter ,(metric edition.), “Mechanical Metallurgy”, New York, McGraw-Hill, (1988)
32.陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, 新竹台灣, (1994)
33.汪建民主編, “材料分析”, 中國材料科學學會, (1998)
34.C.C. Peng, C.K. Chung and J.F. Lin, “Effects of Al-film thickness and annealing temperature on the aluminum-induced crystallization of amorphous silicon and carrier mobility”, ACTA Materialia, (2011)
35.C.C. Peng, C.K. Chung, B.H. Wu, M.H. Wang, C.C. Huang and J.F. Lin, “Effects of annealing conditions and thickness ratio of Si/Al films on the hall carrier mobility, Al carrier concentration, and nanovoids formed in the metal-induced Si crystallization of Si/Al/Si/SiO2/glass specimens”, Surface & Coatings Technology, 205, 4672- 4682, (2010)
36.C.C. Peng, C.K. Chung and J.F. Lin, “Formation of microcrystalline silicon films using rapid crystal aluminum induced crystallization under low-temperature rapid thermal annealing”, Thin Solid Films, 518, 6966- 6971, (2010)
37.C.C. Peng, C.K. Chung and J.F. Lin, “Effects of a native oxide layer on the carrier mobility and void formation at aluminum-induced crystallization of amorphous silicon”, Journal of the Electrochemical Society, 157 (12), K260- K268, (2010)
38.彭政展,林仁輝,“P型矽薄膜太陽能電池之低溫奈米鋁金屬誘發多晶矽研究”,國立成功大學-機械工程研究所,博士論文, (2011)
39.W.D. Nix, “Mechanical Properties of thin films”, Metallurgical Trans, Vol. A20, p. 2217, (1989)
40.C.F. Cheng, T.C. Leung, W.Y. Chan and M.C. Poon, “The effect of nickel thickness in nickel-induced lateral crystallization of amorphous Si”, IEEE Region 10 International Conference on Electrical and Electronic Technology, Singapore, Singapore, August, Vol. 19-22, p. 838, (2001).
41.T.C. Leung, C.F. Cheng and M.C. Poon, “Poly silicon film formation by nickel-induced lateral crystallization and pulsed raped thermal annealing”, IEEE Region 10 International Conference on Electrical and Electronic Technology, Singapore, Singapore, August, Vol. 19-22, p. 388, (2001)