簡易檢索 / 詳目顯示

研究生: 周威宇
Chou, Wei-Yu
論文名稱: 以固定化Clostridium acetobutylicum細胞進行高效率二階段連續式丁醇醱酵
Developing a highly efficient two-stage continuous butanol fermentation process using immobilized Clostridium acetobutylicum cells
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 126
中文關鍵詞: 生質丁醇固定化細胞兩階段醱酵策略丁酸Clostridium acetobutylicum
外文關鍵詞: Biobutanol, immobilized cells, two-stage fermentation, butyrate, Clostridium acetobutylicum
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去本實驗室以Clostridium acetobutylicum固定化細胞進行連續式丁醇醱酵的結果顯示,當系統操作在低水利滯留時間的條件下,儘管有良好的丁醇生產速率,但葡萄糖利用率僅達50%。為了改善此缺點,本研究利用兩階段丁醇醱酵策略來提升葡萄糖利用率,並進一步提高丁醇生產速率。在兩階段醱酵策略中,將總量為60 g/l的葡萄糖分成兩部分進料,在第一階段進行丁酸醱酵,乃將其中30 g/l的葡萄糖用於丁醇前驅物-丁酸的生產;第二階段則進行丁醇醱酵,乃將剩下的30 g/l 葡萄糖加上前面得到的丁酸用於丁醇的生產。在實際系統啟動前,先利用合成的丁酸測試丁酸在批次及流續流的系統中對丁醇生產的影響。由實驗結果發現,在批次的反應中當添加的丁酸小於5 g/l時,有助於提升丁醇的產量及產率。而在流續流的系統中,以葡萄糖濃度60 g/l及丁酸濃度7 g/l為進料時,可得最佳的丁醇產量(8.1±0.5 g/l)、丁醇生產速率(1.36±0.09 g/l/h)及產率(0.62±0.03 mol butanol/mol glucose)。 接著,進一步將進料葡萄糖濃度降至30 g/l而丁酸進料濃度仍維持7 g/l時,葡萄糖利用率從原本的53%上升至100%,且丁醇的生產並無明顯下降。此外,為了得到最佳操作條件,使用實驗設計法來探討連續式操作時最佳丁醇產率及葡萄糖利用率的條件。結果顯示,當進料濃度在30~33 g/l的葡萄糖及5~7 g/l 的丁酸時有最佳的丁醇生產速率(1.2 g/l)及葡萄糖利用率(95%)。最後,以相同菌株(Clostridium acetobutylicum)用於第一階段的丁酸醱酵,當pH 6.0時30 g/l的葡萄糖可生產約8 g/l的丁酸,將丁酸醱酵液中添加葡葡糖至30 g/l及些許的營養物質且丁酸濃度調整至7 g/l後,做為第二階段的進料,發現丁醇的生產與用合成丁酸作為進料時相當接近,結果證實此兩階段流續式的策略確實可成功地應用於丁醇的生產,並大大提升丁醇產量、丁醇產率、丁醇生產速率、產氫速率及葡萄糖利用率。

    Previous studies in our laboratory showed that continuous butanol production with immobilized Clostridium acetobutylicum had great butanol productivity but suffered poor glucose utilization efficiency (ca. 53%) at a short HRT of 6 h. In this study, a two-stage fermentation strategy was applied for butanol production to improve glucose utilization efficiency and further increase butanol productivity. In this two-stage process, the carbon source (totally 60 g/l of glucose) was equally divided into two halves. The first half was used in the first stage for the generation of butyric acid via acidogenesis metabolism and the butyric acid was then used as the precursor for butanol production in the next stage, where the second half of carbon source (i.e., 30 g/l glucose) was used for butanol production via solventogenesis pathway. Prior to the use of the biologically-produced butyrate, a commercially-acquired (synthetic) butyrate was added in batch and continuous modes to investigate the effect of butyric acid on butanol production performance. The results indicated that in batch culture, the addition of 5 g/l butyric acid with a glucose concentration of 60 g/l resulted in an increase in butanol concentration and yield. In continuous culture with 6 h HRT, feeding glucose concentration of 60 g/l with the addition of 7 g/l butyric acid, the C. acetobutylicum culture could achieve the highest butanol concentration, productivity, and yield of 8.1±0.5 g/l, 1.36±0.09 g/l/h, and 0.62±0.03 mol butanol/mol glucose, respectively. When feeding concentration of glucose was decreased from 60 to 30 g/l at an optimal butyric acid supplement of 7 g/l, glucose utilization significantly increased from 53% to 100% without obvious changes in butanol production performance. Moreover, the stable operational period of continuous ABE fermentation with immobilized-cell system was further extended to 88 days without apparent degeneration. In addition, experimental design tool was applied to optimize the conditions for the continuous culture. The optimal conditions determined from experimental design analysis was: glucose concentration, 30-33 g/l; butyric acid, 5-7 g/l; HRT, 6 h. Under these optimal conditions, the immobilized C. acetobutylicum could obtain a butanol productivity and glucose utilization efficiency of 1.2 g/l/h and 95%, respectively. For the two-stage operation, 30 g/l glucose was fermented in the first stage using the same strain under acidogenic conditions, producing nearly 8 g/l butyrate in the culture broth. The effluent of the first-stage process was used to prepare the culture medium for butanol production in the second stage (solventogenic stage). The butanol fermentation in continuous culture using 30 g/l glucose supplemented with 7 g/l butyrate produced in the first stage showed similar performance to that obtained from using pure butyric acid. Therefore, the two-stage fermentation strategy could be successfully applied in butanol production to increase the butanol productivity and glucose utilization.

    摘要 I Abstract III Acknowledgements V Contents VIII List of tables XII List of figures XIV Chapter 1 Introduction 1 1.1 Motivation and purpose 1 1.2 Research Scheme 4 Chapter 2 Literature review 6 2.1 Butyrate production 6 2.1.1 Chemical synthesis of butyric acid 7 2.1.2 Biological synthesis of butyric acid 7 2.1.2.1 Butyric acid producing strains 8 2.1.2.2 Metabolic Pathway and Regulation of microbial Strains which produce butyric acid as an end product 11 2.1.2.3 Metabolic Pathway and Regulation of bacterial Strains which produce butanol as an end product 16 2.2 Butanol production 19 2.2.1 Industrial importance of butanol as a fuel 19 2.2.2 Chemical synthesis of butanol 23 2.2.3 Biological synthesis of butanol 25 2.2.3.1 History 25 2.2.3.2 Microorganism 26 2.2.3.3 Metabolic pathways 27 2.2.3.3.1 Acid producing pathways 27 2.2.3.3.2 Solvent producing pathway 28 2.2.3.4 Challenges and solutions 33 2.3 Hydrogen production 34 2.3.1 Conventional hydrogen production methods 35 2.3.2 Biological hydrogen production 37 Chapter 3 Materials and methods 40 3.1 Chemical and materials 40 3.2 Equipment 42 3.3 Bacterial strains and cultivation conditions 43 3.4 Analytical methods 46 3.4.1 Measurement of gaseous products 46 3.4.2 Determination of the concentration of soluble metabolites by HPLC 47 3.4.3 Determination of the concentration of acetone, butanol and ethanol by GC 47 3.4.4 Analysis of transient behavior by modified Gompertz equation 47 3.4.5 Determination of Cell Concentration 50 3.5 Experimental methods 51 3.5.1 Immobilization of Clostridium acetobutylicum with Poly-vinyl-alcohol (PVA) 51 3.5.2 Effect of butyric acid supplement on batch butanol fermentation with PVA-immobilized cells of Clostridium acetobutylicum 51 3.5.3 Effect of butyric acid supplement on continuous butanol fermentation with PVA-immobilized cells of Clostridium acetobutylicum 52 3.5.4 Effect of pH control on butyric acid production 52 3.5.5 Effect of different concentrations of supplemented media components (CRM) in butyrate fermentation broth with cell removing in batch culture 52 3.5.6 Effect of different concentrations of supplemented media components (CRM) in butyrate fermentation broth with cell removing in continuous culture 53 3.5.7 Effect of different concentrations of supplemented media components (CRM) in butyrate fermentation broth without cell removing in continuous culture 53 3.5.8 Integration of the two stage continuous fermentation 53 Chapter 4 Results and discussion 54 4.1 Effect of butyric acid concentration on immobilized C. acetobutylicum ATCC 824 54 4.1.1 Effect of initial butyric acid concentration on butanol production performance in batch culture 54 4.1.2 Effect of butyric acid (commercially-acquired) concentration on butanol production performance in continuous culture 64 4.1.3 Analysis by experimental design tool 80 4.2 Effect of controlled-pH on the butyrate performance of C. acetobutylicum 94 4.3 Effect of fermented butyric acid on the butanol performance of C. acetobutylicum 100 4.3.1 Effect of different concentrations of supplemented CRM components in butyrate fermentation broth with cell removing in batch culture 100 4.3.2 Effect of different concentrations of supplemented CRM components in butyrate fermentation broth with cell removing in continuous culture 108 4.3.3 Effect of different concentrations of supplemented CRM components in butyrate fermentation broth without cell removing in continuous culture 109 Chapter 5 Conclusions 112 Reference 114

    Aleksic, S. (2009). Butanol Production from Biomass. master, Youngstown State University.
    Armstrong, D. W. and H. Yamazaki (1986). "Natural flavours production: a biotechnological approach." Trends in biotechnology 4(10): 264-268.
    Asada, Y. and J. Miyake (1999). "Photobiological hydrogen production." Journal of Bioscience and Bioengineering 88: 1-6.
    Assobhei, O., A. El Kanouni, M. Ismaili, M. Loutfi and H. Petitdemange (1998). "Effect of acetic and butyric acids on the stability of solvent and spore formation by Clostridium acetobutylicum ATCC 824 during repeated subculturing." Journal of fermentation and bioengineering 85(2): 209-212.
    Baba, S.-i., Y. Tashiro, H. Shinto and K. Sonomoto (2012). "Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum." Journal of biotechnology 157(4): 605-612.
    Baba, S., Y. Tashiro, H. Shinto and K. Sonomoto (2011). "Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum." Journal of Biotechnology 157(4): 605-617.
    Bahl, H., W. Andersch, K. Braun and G. Gottschalk (1982). "Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture." European journal of applied microbiology and biotechnology 14(1): 17-20.
    Bahl, H., W. Andersch and G. Gottschalk (1982). "Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat." European journal of applied microbiology and biotechnology 15(4): 201-205.
    Bahl, H., W. Andersch and G. Gottschalk (1982). "Continuous Production of Acetone and Butanol by Clostridium acetobutylicum in a Two-Stage Phosphate Limited Chemostat." European Journal of Applied Microbiology and Biotechnology 15: 201-205.
    Bahl, H. and G. Gottschalk (1984). "Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture." Biotechnology and bioengineering symposium 14: 215-223.
    Barbeau, J., R. Marchal and J. Vandecasteele (1988). "Conditions promoting stability of solventogenesis or culture degeneration in continuous fermentations of Clostridium acetobutylicum." Applied microbiology and biotechnology 29(5): 447-455.
    Blank-Porat, D., T. Gruss-Fischer, N. Tarasenko, Z. Malik, A. Nudelman and A. Rephaeli (2007). "The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties." Cancer letters 256(1): 39-48.
    Bochman, M., F. A. Cotton, C. A. Murillo and G. Wilkinson (1999). "Advanced inorganic chemistry." USA: John Wiley & Sons, Inc.
    Bowles, L. K. and W. L. Ellefson (1985). "Effects of butanol on Clostridium acetobutylicum." Applied and Environmental Microbiology 50(5): 1165-1170.
    Brosseau, J. D., J. Y. Yan and K. V. Lo (1986). "The relationship between hydrogen gas and butanol production by Clostridium saccharoperbutylacetonicum." Biotechnology and bioengineering 28(3): 305-310.
    Canganella, F., S.-U. Kuk, H. Morgan and J. Wiegel (2002). "Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation." Microbiological research 157(2): 149-156.
    Chen, B.-Y., F.-Y. Chuang, C.-L. Lin and J.-S. Chang (2012). "Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving biobutanol production." Biochemical Engineering Journal 69: 100-105.
    Chen, C.-K. and H. Blaschek (1999). "Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101." Applied microbiology and biotechnology 52(2): 170-173.
    Chen, C.-K. and H. P. Blaschek (1999). "Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration." Applied and environmental microbiology 65(2): 499-505.
    Chen, C. and H. Blaschek (1999). "Effect of acetate on molecular and physiological aspects of solvent production and strain degeneration in Clostridium beijerinckii NCIMB 8052." Appl. Environ. Microbiol 65: 499-505.
    Chen, M., J. Zhao and X. L. (2008). "Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars." Carbohydrate Polymers 71(2): 411-415.
    Chen, Z.-X. and T. R. Breitman (1994). "Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy." Cancer Research 54(13): 3494-3499.
    Collier-Hyams, L. S., S. Sitaraman and A. Neish (2006). Butyric acid, a physiologic bacterial fermentation product, represses epithelial inflammatory signaling via changes in Cul-1 neddylation. GASTROENTEROLOGY, WB SAUNDERS CO-ELSEVIER INC INDEPENDENCE SQUARE WEST CURTIS CENTER, STE 300, PHILADELPHIA, PA 19106-3399 USA.
    Dürre, P. (2007). "Biobutanol: An attractive biofuel." Biotechnology Journal 2: 1525-1534.
    Das, D. and T. N. Veziroglu (2001). "Hydrogen production by biological processes: a survey of literature." International Journal of Hydrogen Energy 26: 13-28.
    Dunn, S. (2002). "Hydrogen futures: toward a sustainable energy system." International Journal of Hydrogen Energy 27: 235-264.
    Ennis, B. and I. Maddox (1989). "Production of solvents (ABE fermentation) from whey permeate by continuous fermentation in a membrane bioreactor." Bioprocess Engineering 4(1): 27-34.
    Ezeji, T., N. Qureshi and H. P. Blaschek (2007). "Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii." Process Biochemistry 42(1): 34-39.
    Ezeji, T. C., N. Qureshi and H. P. Blaschek (2004). "Butanol fermentation research: upstream and downstream manipulations." The chemical record 4(5): 305-314.
    Ezeji, T. C., N. Qureshi and H. P. Blaschek (2007). "Bioproduction of butanol from biomass: from genes to bioreactors." Current opinion in biotechnology 18(3): 220-227.
    Falbe, J. (1970). "Carbon monoxide in organic synthesis Berlin-Heidelberg- New York: Springer Verlag."
    Geng, Q. and C.-H. Park (1993). "Controlled-pH batch butanol-acetone fermentation by low acid producing Clostridium acetobutylicum B18." Biotechnology letters 15(4): 421-426.
    Geng, Q., C.-H. Park and K. Janni (1995). "Uptake of organic acids byClostridium acetobutylicum B18 under controlled pH and reduced butanol inhibition." Korean Journal of Chemical Engineering 12(3): 378-383.
    George, H. A. and J.-S. Chen (1983). "Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum)." Applied and Environmental Microbiology 46(2): 321-327.
    Girbal, L., C. Croux, I. Vasconcelos and P. Soucaille (1995). "Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824." FEMS Microbiology Reviews 17(3): 287-297.
    Gottwald, M. and G. Gottschalk (1985). "The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation." Archives of microbiology 143(1): 42-46.
    Grupe, H. and G. Gottschalk (1992). "Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction." Applied and Environmental Microbiology 58(12): 3896-3902.
    Hüsemann, M. and E. T. Papoutsakis (1990). "Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum." Applied and environmental microbiology 56(5): 1497-1500.
    Hüsemann, M. H. and E. T. Papoutsakis (1988). "Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations." Biotechnology and bioengineering 32(7): 843-852.
    Hallenbeck, P. C. and J. R. Benemann (2002). "Biological hydrogen production: fundamentals and limiting processes." International Journal of Hydrogen Energy 27: 1185-1193.
    Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. Troost and R. J. Brummer (2008). "Review article: the role of butyrate on colonic function." Alimentary pharmacology & therapeutics 27(2): 104-119.
    Harris, L. M., R. P. Desai, N. E. Welker and E. T. Papoutsakis (2000). "Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition?" Biotechnology and bioengineering 67(1): 1-11.
    Hartmanis, M. G. and S. Gatenbeck (1984). "Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate." Applied and Environmental Microbiology 47(6): 1277-1283.
    Hartmanis, M. G., T. Klason and S. Gatenbeck (1984). "Uptake and activation of acetate and butyrate in Clostridium acetobutylicum." Applied microbiology and biotechnology 20(1): 66-71.
    Ho, S. H., S. W. Huang, C. Y. Chen, T. Hasunum, A. Kondo and J. S. Chang (2013). "Bioethanol production using carbohydrate-rich microalgae biomass as feedstock." Bioresour Technol 135: 191-198.
    Hofstad, T. (2006). The genus fusobacterium. The prokaryotes, Springer: 1016-1027.
    Huang, W.-C., D. E. Ramey and S.-T. Yang (2004). "Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor." Applied biochemistry and biotechnology 115(1-3): 887-898.
    Inoue, A. and K. Horikoshi (1991). "Estimation of solvent-tolerance of bacteria by the solvent parameter log P." Journal of Fermentation and Bioengineering 71(3): 194-196.
    Jo, J. H., D. S. Lee and J. M. Park (2008). "The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1." Bioresource technology 99(17): 8485-8491.
    Junelles, A., R. Janati-Idrissi, H. Petitdemange and R. Gay (1988). "Iron effect on acetone-butanol fermentation." Current Microbiology 17(5): 299-303.
    Kim, B. H., P. Bellows, R. Datta and J. Zeikus (1984). "Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields." Applied and environmental microbiology 48(4): 764-770.
    Kong, Q., G. He, F. Chen and H. Ruan (2006). "Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricum." Letters in applied microbiology 43(1): 71-77.
    Lütke-Eversloh, T. and H. Bahl (2011). "Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production." Current opinion in biotechnology 22(5): 634-647.
    Lee, S.-M., M. O. Cho, C. H. Park, Y.-C. Chung, J. H. Kim, B.-I. Sang and Y. Um (2008). "Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate." Energy & Fuels 22(5): 3459-3464.
    Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim and K. S. Jung (2008b). "Fermentative butanol production by clostridia." Biotechnology and Bioengineering 101(2): 209-228.
    Lefranc, L. and E. Cie (1923). "A process for the manufacture of butyric acid and other fatty acids with recovery of the gases of fermentation. Br." Pat 186: 572.
    Li, L., H. Ai, S. Zhang, S. Li, Z. Liang, Z. Q. Wu, S. T. Yang and J. F. Wang (2013). "Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum." Bioresource Technology 143: 397-404.
    Li, S. Y., R. Srivastava, S. L. Suib, Y. Li and R. S. Parnas (2011). "Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control." Bioresource Technology 102(5): 4241-4250.
    Lienhardt, J., J. Schripsema, Q. S. and H. P. Blaschek (2002). "Butanol Production by Clostridium beijerinckii BA101 in an Immobilized Cell biofilm Reactor." Applied Biochemistry and Biotechnology(98): 591-598.
    Lin, C. Y. and C. H. Lay (2004). "Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora." International Journal of Hydrogen Energy 19: 275-281.
    Lu¨ tke-Eversloh, T. and H. Bahl (2011). "Metabolic engineeringof Clostridium acetobutylicum: recent advances to improve butanol production." Current Opinion in Biotechnology 22: 1-14.
    Mariano, A. P., C. B. B. Costa, D. D. de Angelis, F. Maugeri, D. I. P. Atala, M. R. W. Maciel and R. Maciel (2009). "Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production." Applied Biochemistry and Biotechnology 159: 366-381.
    Matta-El-Ammouri, G., R. Janati-Idrissi, A.-M. Junelles, H. Petitdemange and R. Gay (1987). "Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum." Biochimie 69(2): 109-115.
    Meyer, C. L., J. W. Roos and E. T. Papoutsakis (1986). "Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures ofClostridium acetobutylicum." Applied microbiology and biotechnology 24(2): 159-167.
    Michel-Savin, D., R. Marchal and J. Vandecasteele (1990). "Control of the selectivity of butyric acid production and improvement of fermentation performance withClostridium tyrobutyricum." Applied microbiology and biotechnology 32(4): 387-392.
    Momirlan, M. and T. Veziroglu (1999). "Recent directions of world hydrogen production." Renewable & Sustainable Energy Reviews 3: 219-231.
    Monot, F., J.-M. Engasser and H. Petitdemange (1984). "Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum." Applied Microbiology and Biotechnology 19(6): 422-426.
    Monot, F. and J. Engasser (1983). "Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation." Biotechnology Letters 5(4): 213-218.
    Mu, Y., H. Q. Yu and G. Wang (2007). "A kinetic approach to anaerobic hydrogen-producing process." Water Research 41: 1152-1160.
    Park, C.-H., Q. Geng and P. Rogers (1993). "Characteristics of butanol fermentation by a low-acid-producing Clostridium acetobutylicum B18." Applied microbiology and biotechnology 39(2): 148-154.
    Peguin, S. and P. Soucaille (1995). "Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition." Applied and environmental microbiology 61(1): 403-405.
    Playne, M. (1985). "Propionic and butyric acids."
    Pouillart, P. R. (1998). "Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies." Life sciences 63(20): 1739-1760.
    Qureshi, N., P. Karcher, M. Cotta and H. P. Blaschek (2004). High-productivity continuous biofilm reactor for butanol production. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, Springer.
    Qureshi, N., L. Lai and H. Blaschek (2004). "Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii." Food and Bioproducts Processing 82(2): 164-173.
    Qureshi, N., X. L. Li, S. Hughes, B. C. Saha and M. A. Cotta (2006). "Butanol production from corn fiber xylan using Clostridium acetobutylicum." Biotechnology progress 22(3): 673-680.
    Qureshi, N., A. Paterson and I. Maddox (1988). "Model for continuous production of solvents from whey permeate in a packed bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar." Applied microbiology and biotechnology 29(4): 323-328.
    Qureshi, N., J. Schripsema, J. Lienhardt and H. Blaschek (2000). "Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick." World Journal of Microbiology and Biotechnology 16(4): 377-382.
    Ramey, D. and S.-T. Yang (2004). "Production of butyric acid and butanol from biomass." final report to the US Department of Energy, Contract No.: DE-F-G02-00ER86106.
    Rao, G. and R. Mutharasan (1987). "Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes." Applied and environmental microbiology 53(6): 1232-1235.
    Rephaeli, A., R. Zhuk and A. Nudelman (2000). "Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications." Drug Development Research 50(3‐4): 379-391.
    Rogers, P., J.-S. Chen and M. J. Zidwick (2006). Organic acid and solvent production. The prokaryotes, Springer: 511-755.
    Rubinow, S. I. (2002). "Introduction to mathematical biology A wiley-interscience."
    Saint-Amans, S. and P. Soucaille (1995). "Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glucose-glycerol mixtures." Biotechnology letters 17(2): 211-216.
    Sauer, E. (1992). "Carboxylic Acids, Economic Aspects." Kirk-Othmer Encyclopedia of Chemical Technology.
    Schrader, J. (2007). Microbial flavour production. Flavours and fragrances, Springer: 507-574.
    Shoko, E., B. McLellan, A. L. Dicks and J. C. D. da Costa (2006). "Hydrogen from coal: Production and utilisation technologies." International Journal of Coal Geology 65: 213-222.
    Soni, B. and M. Jain (1997). "Influence of pH on butyrate uptake and solvent fermentation by a mutant strain of Clostridiumacetobutylicum." Bioprocess Engineering 17(6): 329-334.
    Soni, B., C. Kapp, G. Goma and P. Soucaille (1992). "Solvent production from starch: effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium." Applied microbiology and biotechnology 37(5): 539-543.
    Soni, B. K., K. Das and T. K. Ghose (1987). "Inhibitory factors involved in acetone-butanol fermentation byClostridium saccharoperbutylacetonicum." Current microbiology 16(2): 61-67.
    Stiegel, G. J. and M. Ramezan (2006). "Hydrogen from coal gasification: An economical pathway to a sustainable energy future." International Journal of Coal Geology 65: 173-190.
    Survase, S. A., A. van Heiningen and T. Granström (2012). "Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized Clostridium acetobutylicum DSM 792." Applied microbiology and biotechnology 93(6): 2309-2316.
    Sutton, J., M. Dhanoa, S. Morant, J. France, D. Napper and E. Schuller (2003). "Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets." Journal of dairy science 86(11): 3620-3633.
    Tashiro, Y., H. Shinto, M. Hayashi, S.-i. Baba, G. Kobayashi and K. Sonomoto (2007). "Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen." Journal of bioscience and bioengineering 104(3): 238-240.
    Tashiro, Y. and K. Sonomoto (2010). "Advances in butanol production by clostridia." formatex: 1383-1394.
    Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki and S. Yoshino (2004). "High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method." Journal of bioscience and bioengineering 98(4): 263-268.
    Terracciano, J. S. and E. R. Kashket (1986). "Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum." Applied and environmental microbiology 52(1): 86-91.
    Tsai, T.-Y. (2014). "以農業廢棄物及微藻生質體為料源進行固定化細胞丁醇醱酵並結合薄膜蒸餾法進行產物同步移除以提升丁醇產量." 成功大學化學工程學系學位論文: 1-163.
    Van Andel, J., G. Zoutberg, P. Crabbendam and A. Breure (1985). "Glucose fermentation byClostridium butyricum grown under a self generated gas atmosphere in chemostat culture." Applied microbiology and biotechnology 23(1): 21-26.
    Van Der Westhuizen, A., D. T. Jones and D. R. Woods (1982). "Autolytic activity and butanol tolerance of Clostridium acetobutylicum." Applied and environmental microbiology 44(6): 1277-1281.
    Van Ginkel, S., S. W. Sung and J. Lay (2001). "Biohydrogen production as a function of pH and substrate concentration." Environmental Science & Technology 35: 4726-4730.
    Ventura, J.-R. and D. Jahng (2013). "Improvement of butanol fermentation by supplementation of butyric acid produced from a brown alga." Biotechnology and bioprocess engineering 18(6): 1142-1150.
    Wang, Y.-R., Y.-S. Chiang, P.-J. Chuang, Y.-P. Chao and S.-Y. Li (2016). "Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation." Applied microbiology and biotechnology: 1-8.
    Welch, R. W., S. W. Clark, G. N. Bennett and F. B. Rudolph (1992). "Effects of rifampicin and chloramphenicol on product and enzyme levels of the acid-and solvent-producing pathways of Clostridium acetobutylicum (ATCC 824)." Enzyme and microbial technology 14(4): 277-283.
    Williams, E. A., J. M. Coxhead and J. C. Mathers (2003). "Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms." Proceedings of the Nutrition Society 62(01): 107-115.
    Wu, J. F. (2006). Biohydrogen production using starch as the carbon substrate. Master, National Cheng Kung University.
    Yazdani, S. S. and R. Gonzalez (2007). "Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry." Current Opinion in Biotechnology 18: 213-219.
    Yen, H. W., R. J. Li and T. W. Ma (2011). "The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum." Journal of the Taiwan Institute of Chemical Engineers 42(6): 902-907.
    Yerushalmi, L., B. Volesky and T. Szczesny (1985). "Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum." Applied microbiology and biotechnology 22(2): 103-107.
    Zhang, C., H. Yang, F. Yang and Y. Ma (2009). "Current progress on butyric acid production by fermentation." Current microbiology 59(6): 656-663.
    Zheng, Y. N., L. Z. Li, M. Xian, Y. J. Ma, J. M. Yang, X. Xu and D. Z. He (2009). "Problems with the microbial production of butanol." Journal of Industrial Microbiology and Biotechnology 36: 1127-1138.
    Zhu, Y. and S.-T. Yang (2004). "Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum." Journal of Biotechnology 110(2): 143-157.
    Zigova, J. and E. Šturdik (2000). "Advances in biotechnological production of butyric acid." Journal of Industrial microbiology and Biotechnology 24(3): 153-160.
    Zverlov, V. V., O. Berezina, G. A. Velikodvorskaya and W. H. Schwarz (2006). "Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery." Applied Microbiology and Biotechnology 71: 587-597.
    Zwietering, M. H., I. Jongenburger, F. M. Rombouts and K. Vantriet (1990). "Modeling of the Bacterial-Growth Curve." Applied and Environmental Microbiology 56: 1875-1881.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE