簡易檢索 / 詳目顯示

研究生: 王浲德
wang, feng-de
論文名稱: 磊晶成長對聚左乳酸分子層晶彎曲型態的影響
Development of bending morphology of individual poly(L-lactide) lamellae epitaxially grown on the crystallize substrate
指導教授: 阮至正
Ruan, Jrjeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 55
中文關鍵詞: 磊晶成長層晶斜傾彎摺鏈段
外文關鍵詞: lamellar twist, chain-tilt, epitaxial, PLA, HMB
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子層晶的成長(lamellar growth),普遍發展出周期扭曲(lamellar twisting)的形態。這個結晶形態的形成,推論是因為於層晶的結晶區與非結晶區界面,有著不平衡的表面應力(imbalanced surface stress)分佈所引起。而分子鏈的結構、排列方式及結晶成長環境,均和表面應力的形成息息相關。
    這個研究是藉由聚乳酸分子(polylactic acid)於固定的磊晶成長(epitaxial growth)環境下,逐一探討溫度與分子量對單一層晶(individual lamella)成長習性的影響。並在同樣的溫度與環境下觀察,旋光性等分子結構因素,對層晶成長所扮演的角色。
    經由電子顯微鏡可以觀察到,聚乳酸分子依據晶格對應關係所進行的有序結晶成長。由所獲得的電子繞射,可以進一步瞭解在層晶中規則排列的鏈段,斜傾(chain tilting )於層晶垂直方向(lamellar normal)的程度,與磊晶成長溫度及分子量成正比,並造成層晶厚度隨成長溫度增加而下降的異常現象。在維持成長環境及晶格對應關係的情形下,可以推論出彎摺鏈段(fold loop)於層晶界面的相互排擠,是造成鏈段斜傾現象的主要原因。
    層晶彎曲的形態,和鏈段斜傾現象一樣,隨著溫度或分子量的增加,而有較明顯的發展。此外,層晶彎曲的方向亦與鏈段斜傾的方向一致。這些研究觀察明確的指出,層晶界面的應力分佈,會受到鏈段斜傾現象的影響,而決定層晶彎曲成長的方向。

    Long chain molecules adopt a folded conformation during growth of ordered crystalline phases. This chain folding process leads to the formation of crystalline lamellae sandwiched by non-crystalline fold surface layers. Within this sandwiched structure, molecular packing stems can tilt to the lamellar normal, and consequently causes the orientation of unit cell to be changed. This chain tilting is an important factor for the morphology of single crystal grown in solution, and also for lamellar twisting in the crystallization from the bulk. Considering the applications of polymeric thin films, this crystal habit is closely related to materials density, interface stresses, and orientation of dipole moment, and thus capable of yielding significant effect on desired optic-electrical and mechanical properties.

    However most of the carried studies regarding this subject are established on the growth of lamellar bundles within spherulite, which necessarily involves complicated interactions with neighboring lamellar growth. In this case, the mechanisms for the imbalanced surface stresses and dislocations to develop and influence the twisted habit, remain limitedly understood since being proposed twenty years ago. Therefore, it is needed to adopt an experimental strategy to crystallize polymers into arrays of individual lamellae with unperturbed twisting or bending tendency.

    The success in growing oriented arrays of individual lamellae of polylactic acid on selected surface has been achieved in this research, which leads to the observation of unperturbed bending tendency of individual lamella. The involved lattice match results in a uniform nucleation and growth environments through universal contact plane of edge-on lamellae. Thus the exact effect of studied influential factor, for example, the transition from once-folded to twice-folded conformation of molecular chain, can be distinguished while keeping other growth factors unchanged.

    Moreover, the diffraction patterns obtained from corresponding area of oriented edge-on lamellae unveiled the occurrence of chain tilt on the same plane of lamellar bending, which is named as coplanar chain tilt. This newly-discovered coplanar chain tilt exhibits a unique relationship with developed bending morphology of polylactide individual lamellae; as molecular stems tilt toward to the right, only clockwise lamellar bending is present.

    The influential factors to be individually investigated are classified into two categories, which are of molecular features, like chirality and molecular weight, and of growth environments, like growth temperature. Through this study, it is found that the increases of temperature or molecular weight can both increase the bending tendency of individual edge-on lamellae, which help to significantly advance the understanding on the governing mechanism of twisted growth habit of synthetic polymers.

    摘要 II ABSTRACT III 致謝 V 目錄 VI 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 4 2-1 聚左乳酸簡介 4 2-2磊晶成長 7 2-3層晶扭曲理論 10 2-3-1 自發成長理論 10 2-3-2 螺旋差排理論 11 2-3-3 不平衡的層晶表面應力 14 第三章 實驗材料與方法 19 3-1 實驗流程圖 19 3-2 實驗材料 20 3-3 實驗分析儀器 21 3-4 實驗步驟 23 第四章 結果與討論 25 4-1分子量對層晶成長趨勢的影響 25 4-2磊晶成長溫度對層晶彎曲成長形態的影響 37 4-3分子旋光性對層晶彎曲成長形態的影響 48 第五章 結論 52 文獻回顧 54

    [1] H. Tsuji, Macromol. Biosci., Vol.5, pp.569, 2005
    [2] K. van de velde, P.Kiekens, polymer testing 21,pp.433-442,2002
    [3] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, and B. Lotz, Polymer, Vol.41, pp.8909, 2000.
    [4] W. Hoogsten, A. R. Postema, A. J. Pennings, G. tenBrinke, and P. Zugenmaier, Macromolecules, Vol.23, pp.634, 1990.
    [5] N. Teramoto, K. Urata, K. Ozawa, and M. Shibata, Polym. Degrad. Stab., Vol.86, pp.401, 2004.
    [6] T. Kasuga, Y. Ota, M. Nogami, and Y. Abe, Biomaterials, Vol.22, pp.19, 2001.
    [7] Seifert, H. (1953), in Structure and Properties of Solid Surface, Gomer, R., and Smith, C. S., Eds., Univ. Chicago, p. 318.
    [8] Frankenheim, M. L. (1836), Ann. Phys. 37, 516
    [9] Royer, L. (1928), Bull. Soc. Fr. Mineral. Crystalloger. 51, 7
    [10] L. O. Brockway and J. Monteath Robertson., J. chem. Soc., 1939, 1324-1332
    [11] Lonsdale, proc. roy. Soc., 1929, A, 123, 494
    [12] Lonsdale, Trans. Faraday Soc,. 1929, 25, 352
    [13] Brockway and Taylor, Ann. Reports, 1937, 34, 196
    [14] Robertson, Proc. Roy. Soc., 1933, A, 142, 659
    [15] Schultz JM., Polymer 2003;44;433
    [16] Lotz B, Thierry A., Macromolecules 2003;36;286
    [17] Bassett DC, Hodge AM., Polymer 1978;19:469
    Bassett DC, Hodge AM., Proc. R. Soc. Lond, 1979;A359:121
    Bassett DC, Hodge AM., Proc. R. Soc. Lond, 1981;A377:61
    [18] Bassett DC., J Macromol Sci 2003 ;44 :433
    [19] B. Lotz, S.Z.D. Cheng, Polymer 46 (2005) 577-610
    [20] Keith HD, Chen WY, Polymer 2002;43:6263
    [21] Kunz M, Dreschler M, Möller S., Polymer 1995;36:1331
    [22] Chia-Cheng Chao, Chun-Ku Chen, Yeo-Wan Chiang, and Rong-Ming Ho, Macromolecules 2008, 41, 3949-3956
    [23] Keith HD, Padden FJ., Polymer 1984;25:8
    [24] Damien Maillard and Robert E. Prud’homme*Macromolecules 2008, 41, 1705-1712

    下載圖示
    校外:立即公開
    QR CODE