| 研究生: |
陳宗億 Chen, Tsung-Yi |
|---|---|
| 論文名稱: |
高能量密度中孔洞碳材之超級電容製作與應用 Synthesis and Application of Mesoporous Carbon Based High Energy Density Supercapacitor |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 中孔洞碳材 、超級電容器 、離子液體 |
| 外文關鍵詞: | mesoporous carbon, supercapacitor, ionic liquid |
| 相關次數: | 點閱:207 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超級電容器又被稱為電雙層電容器(electrical double-layer capacitors,EDLC),藉由離子吸附於多孔洞碳材表面以儲存電荷。本研究室的超級電容器有三個主要優點:(1) Energy density高於市售超級電容器10 Wh/Kg (2) 使用高工作電壓離子液體做電解質 (3) 高循環壽命。
研究上合成不同孔徑分佈的高比表面積中孔洞碳材(約1700 m2g-1),例如單一孔徑分佈中孔洞碳材(SP-MC)與多重孔徑分佈中孔洞碳材MP-MC,作為超級電容器的碳電極材料。中孔洞碳材經由各種活化方式提高比表面積或者改善表面結構特性,例如水蒸氣活化法或KOH活化法提高比表面積。本研究提出以微波加熱的方式,移除中孔洞碳材表面的含氧官能基,搭配耐高電壓(3.6 V)離子液體[EMI]+[TFSI]–作為超級電容器電解質,實際充放電的結果Energy density高達80.4 Wh/Kg及80%的電容保留率,遠超過市售以微孔洞的活性碳製成的超級電容器。
本研究為了達到工業化,中孔洞碳材製程上改用奈米氧化鋅(ZnO)取代氧化矽作為固體模板,避免高毒性HF使用,並搭配封窯式高溫熱裂解碳化,減少焦油的殘留,使整個製程達到綠色化學的目標。碳電極製作方面,選用導電碳膠與中孔洞碳材混合成碳漿料,所製成的碳電極即使受到外力衝擊也不易脫落的效果,此技術相當適合碳電極塗佈製程之應用。此塗佈技術也可塗裝於其他基材上,例如海綿,將海綿與碳漿料混合製成耐衝擊與可繞式的超級電容器。未來捲繞式的超級電容器將適合應用於各種能源儲存系統上。
Supercapacitors are known as electrical double-layer capacitors (EDLC), and electrostatic storage of the electrical energy achieved by separation of charge at the interface between the surface of a conductor electrode and an electrolytic solution electrolyte. Supercapacitors have three mainly advantage in this research: (1) Energy density higher than commercial supercapacitors (>10 Wh/Kg). (2) Using commercial ionic liquids (ILs) with large operating voltage as electrolytes. (3) Long cycle life
Mesoporous carbons with various pore structures (such as single-pore mesoporous carbon (SP-MC) and multi-pore mesoporous carbon (MP-MC)) and high surface area (ca. >1500 m2g-1) have been successfully synthesized using different silica source. The mesoporous carbons with appropriate pore structure and porosity were used as electrode materials for supercapacitors. By using steam or KOH activation treatment, the surface area and porosity of the mesoporous carbon is increased. In this research, we used a microwave treatment on the mesoporous porous carbons to remove the surface oxygen-containing groups of mesoporous carbon without destroying porosity. A mSP-MC based supercapacitor device with a ionic liquid [EMI]+[TFSI]– as electrolyte has been assembled and demonstrated. The charge-discharge characteristics of the supercapacitor give a specific energy density (80.4 Wh/Kg) and capacitance retention 80% comparable to that of activate carbon based commercial supercapacitor device.
For mass production of the mesoporous carbon, we provided a simple and reproducible synthesis method by carbon using nano zinc-oxide as solid template instead of silica to avoid using high-corrosion HF solution. To reduce the production of by-product tar with high toxicity, the carbonization procedure can be performed by sealing the PF resin-surfactant-ZnO composite in an air-free container and calcination in a furnace. We demonstrate carbon electrode which combination of conductive carbon paste, with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity. A simple and scalable process has been developed to fabricate mesoporous carbon–sponge supercapacitor electrodes using ordinary kitchen sponges. The attractive performances exhibited by these flexible supercapacitors make them potentially promising candidates for future energy storage systems.
1. D. H. Everett, Pure Appl. Chem, 1971, 31, 579-638.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
4. M. E. Delany and E. N. Bazley, Applied Acoustics, 1970, 3, 105-116.
5. H. R. Luckarift, J. C. Spain, R. R. Naik and M. O. Stone, Nat Biotechnol, 2004, 22, 211-213.
6. M. Mureseanu, A. Galarneau, G. Renard and F. Fajula, Langmuir, 2005, 21, 4648-4655.
7. Y. J. Wang and F. Caruso, Chem Mater, 2005, 17, 953-961.
8. C. G. Wu and T. Bein, Science, 1994, 266, 1013-1015.
9. C. G. Wu and T. Bein, Science, 1994, 264, 1757-1759.
10. C. G. Wu and T. Bein, Chem Mater, 1994, 6, 1109-1112.
11. T. Abe, Y. Tachibana, T. Uematsu and M. Iwamoto, J Chem Soc Chem Comm, 1995, 1617-1618.
12. S. C. Tsang, J. J. Davis, M. L. H. Green, H. Allen, O. Hill, Y. C. Leung and P. J. Sadler, J Chem Soc Chem Comm, 1995, 1803-1804.
13. C. H. Ko and R. Ryoo, Chem Commun, 1996, 2467-2468.
14. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202-6210.
15. A. B. Fuertes and D. M. Nevskaia, J Mater Chem, 2003, 13, 1843-1846.
16. L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem Commun, 2009, 0, 6071-6073.
17. C. Liang and S. Dai, Journal of the American Chemical Society, 2006, 128, 5316-5317.
18. Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, International Journal of Hydrogen Energy, 2007, 32, 3976-3980.
19. J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica Acta, 2005, 50, 3131-3141.
20. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2006, 45, 4467-4471.
21. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem Mater, 2005, 17, 3960-3967.
22. J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
23. F. Ide and A. Hasegawa, Journal of Applied Polymer Science, 1974, 18, 963-974.
24. K. Kataoka, A. Harada and Y. Nagasaki, Advanced Drug Delivery Reviews, 2001, 47, 113-131.
25. J. Eric Hampsey, Q. Hu, L. Rice, J. Pang, Z. Wu and Y. Lu, Chem Commun, 2005, 0, 3606-3608.
26. B. Sarkar and P. Alexandridis, J Phys Chem B, 2010, 114, 4485-4494.
27. M. Hartmann, A. Poppl and L. Kevan, J Phys Chem-Us, 1996, 100, 9906-9910.
28. A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, 2nd Edition, John Wiley & Sons. Inc., Singapore, 1980.
29. 胡啟章編著, “電化學原理與方法”, 五南圖書, 2002.
30. 田福助編著, “電化學理論與應用”, 第八版, 新科技, 2001.
31. 林育潤, “以新穎的聚苯胺植入法增進碳電極之電化學超電容”, 國立成功大學化工研究所碩士論文, 2003.
32. R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
33. J. K. Howard, Google Patents, 1984.
34. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, Journal of Power Sources, 2006, 153, 413-418.
35. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
36. J. Gamby, P. Taberna, P. Simon, J. Fauvarque and M. Chesneau, Journal of power sources, 2001, 101, 109-116.
37. D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
38. V. Peykov, A. Quinn and J. Ralston, Colloid and Polymer Science, 2000, 278, 789-793.
39. A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Science and Technology, 2007, 16, 656.
40. R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 1996, 181, 561-570.
41. D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 1807-1818.
42. K. B. Oldham, J Electroanal Chem, 2008, 613, 131-138.
43. K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, The Journal of Physical Chemistry C, 2007, 111, 7411-7421.
44. R. W. Impey, M. Sprik and M. L. Klein, Journal of the American Chemical Society, 1987, 109, 5900-5904.
45. J. Prue and P. Sherrington, Transactions of the Faraday Society, 1961, 57, 1795-1808.
46. R. Zana, M. Benrraou and R. Rueff, Langmuir, 1991, 7, 1072-1075.
47. D. E. Kile and C. T. Chiou, Environ Sci Technol, 1989, 23, 832-838.
48. L. Leibler, H. Orland and J. C. Wheeler, The Journal of chemical physics, 1983, 79, 3550.
49. M. Bohorquez, C. Koch, T. Trygstad and N. Pandit, J Colloid Interf Sci, 1999, 216, 34-40.
50. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski, Electrochimica Acta, 2004, 49, 515-523.
51. J. Gorka, A. Zawislak, J. Choma and M. Jaroniec, Carbon, 2008, 46, 1159-1161.
52. F.-C. Wu, R.-L. Tseng and R.-S. Juang, Separation and purification technology, 2005, 47, 10-19.
53. T. Otowa, Y. Nojima and T. Miyazaki, Carbon, 1997, 35, 1315-1319.
54. M. Molina-Sabio, M. Gonzalez, F. Rodriguez-Reinoso and A. Sepulveda-Escribano, Carbon, 1996, 34, 505-509.
55. P. Ariyadejwanich, W. Tanthapanichakoon, K. Nakagawa, S. Mukai and H. Tamon, Carbon, 2003, 41, 157-164.
56. L. Nadjo and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 48, 113-145.
57. K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 171, 219-230.
58. C. Amatore and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 85, 27-46.
59. M. Doyle, T. F. Fuller and J. Newman, J Electrochem Soc, 1993, 140, 1526-1533.
60. B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J Electrochem Soc, 1983, 130, 1825-1836.
61. D. Harrington and B. Conway, Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 221, 1-21.
62. B. Conway, L. Bai and D. Tessier, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 161, 39-49.
63. J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, 2003, pp. 1098-1104.
64. F. MANSFELD, Corrosion, 1976, 32, 143-146.
65. A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on, IEEE, 2003, pp. 35-40.
66. D. McCumber, Journal of Applied Physics, 1968, 39, 3113-3118.
67. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 570-580.
68. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 478-485.
69. M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
70. K. Jüttner, Electrochimica Acta, 1990, 35, 1501-1508.
71. F. Mansfeld, Journal of Applied Electrochemistry, 1995, 25, 187-202.
72. 蔡定平, 2009.
73. A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız and M. Yalçın, J Colloid Interf Sci, 2004, 269, 310-314.
74. D. Langmuir, P. Hall and J. Drever, Environmental Geochemistry, Englewood Cliffs: Prentice-Hall, 1997.
75. O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, Journal of the Chemical Society, Chemical Communications, 1993, 724-726.
76. 王浩静, 王红飞, 李东风, 朱星明, 贺福 and 王心葵, 新型炭材料, 2005, 20, 157-163.
77. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., 1974, 1.
78. W. Bond, Acta Crystallographica, 1960, 13, 814-818.
79. A. Patterson, Physical review, 1939, 56, 978.
80. A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor Mesopor Mat, 2009, 117, 75-90.
81. U. Holzwarth and N. Gibson, Nature Nanotechnology, 2011, 6, 534-534.
82. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, Nature, 2009, 458, 872-876.
83. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. Silva, Journal of Applied Physics, 1996, 80, 440.
84. K.-W. Chang, Z.-Y. Lim, F.-Y. Du, Y.-L. Yang, C.-H. Chang, C.-C. Hu and H.-P. Lin, Diamond and Related Materials, 2009, 18, 448-451.
85. Y.-C. Lin, S.-H. Wu, C.-W. Liu, Z.-Y. Lim, C.-W. Huang, H.-P. Lin, S. Deng, M.-C. Yang, C.-Y. Tang and C.-Y. Lin, Journal of Solid State Electrochemistry, 2008, 12, 895-901.
86. Y.-C. Lin, C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Chem Lett, 2007, 36, 1258-1259.
87. C.-Y. Chang-Chien, C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Journal of Porous Materials, 2006, 13, 195-199.
88. C. Y. Chang‐Chien, C. H. Hsu, T. Y. Lee, C. W. Liu, S. H. Wu, H. P. Lin, C. Y. Tang and C. Y. Lin, European Journal of Inorganic Chemistry, 2007, 2007, 3798-3804.
89. C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Materials chemistry and physics, 2006, 100, 112-116.
90. H.-P. Lin, C.-Y. Chang-Chien, C.-Y. Tang and C.-Y. Lin, Micropor Mesopor Mat, 2006, 93, 344-348.
91. M. S. Halper and J. C. Ellenbogen, Report No. MP 05W0000272, The MITRE Corporation, McLean, Virginia, 2006.
92. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon and W. Van Schalkwijk, Nature materials, 2005, 4, 366-377.
93. P. Simon and Y. Gogotsi, Nature materials, 2008, 7, 845-854.
94. S. Ono, S. Seki, R. Hirahara, Y. Tominari and J. Takeya, Appl Phys Lett, 2008, 92, 103313-103313-103313.
95. Z. Lei, N. Christov, L. L. Zhang and X. S. Zhao, J Mater Chem, 2011, 21, 2274-2281.
96. D. Hulicova‐Jurcakova, M. Seredych, G. Q. Lu and T. J. Bandosz, Adv Funct Mater, 2009, 19, 438-447.
97. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski and E. Frackowiak, Chemical physics letters, 2005, 404, 53-58.
98. A. Pandolfo and A. Hollenkamp, Journal of Power Sources, 2006, 157, 11-27.
99. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu and T. J. Bandosz, Carbon, 2008, 46, 1475-1488.
100. C. Peng, S. Zhang, D. Jewell and G. Z. Chen, Progress in Natural science, 2008, 18, 777-788.
101. S. R. Kamath and A. Proctor, Cereal chemistry, 1998, 75, 484-487.
102. A. Lewandowski and A. Świderska, Solid State Ionics, 2003, 161, 243-249.
103. K. Xu, Chemical Reviews-Columbus, 2004, 104, 4303-4418.
104. A. Nomura, K. Ohno, T. Fukuda, T. Sato and Y. Tsujii, Polymer Chemistry, 2012, 3, 148.
105. P. Rodatz, G. Paganelli, A. Sciarretta and L. Guzzella, Control Engineering Practice, 2005, 13, 41-53.
106. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, Phys Chem Chem Phys, 2011, 13, 17615-17624.
107. L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong and J. Chen, ACS nano, 2011, 6, 656-661.
108. W. Chen, R. Rakhi and H. Alshareef, J Mater Chem, 2012, 22, 14394-14402.