簡易檢索 / 詳目顯示

研究生: 陳宗億
Chen, Tsung-Yi
論文名稱: 高能量密度中孔洞碳材之超級電容製作與應用
Synthesis and Application of Mesoporous Carbon Based High Energy Density Supercapacitor
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 117
中文關鍵詞: 中孔洞碳材超級電容器離子液體
外文關鍵詞: mesoporous carbon, supercapacitor, ionic liquid
相關次數: 點閱:207下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超級電容器又被稱為電雙層電容器(electrical double-layer capacitors,EDLC),藉由離子吸附於多孔洞碳材表面以儲存電荷。本研究室的超級電容器有三個主要優點:(1) Energy density高於市售超級電容器10 Wh/Kg (2) 使用高工作電壓離子液體做電解質 (3) 高循環壽命。
    研究上合成不同孔徑分佈的高比表面積中孔洞碳材(約1700 m2g-1),例如單一孔徑分佈中孔洞碳材(SP-MC)與多重孔徑分佈中孔洞碳材MP-MC,作為超級電容器的碳電極材料。中孔洞碳材經由各種活化方式提高比表面積或者改善表面結構特性,例如水蒸氣活化法或KOH活化法提高比表面積。本研究提出以微波加熱的方式,移除中孔洞碳材表面的含氧官能基,搭配耐高電壓(3.6 V)離子液體[EMI]+[TFSI]–作為超級電容器電解質,實際充放電的結果Energy density高達80.4 Wh/Kg及80%的電容保留率,遠超過市售以微孔洞的活性碳製成的超級電容器。
    本研究為了達到工業化,中孔洞碳材製程上改用奈米氧化鋅(ZnO)取代氧化矽作為固體模板,避免高毒性HF使用,並搭配封窯式高溫熱裂解碳化,減少焦油的殘留,使整個製程達到綠色化學的目標。碳電極製作方面,選用導電碳膠與中孔洞碳材混合成碳漿料,所製成的碳電極即使受到外力衝擊也不易脫落的效果,此技術相當適合碳電極塗佈製程之應用。此塗佈技術也可塗裝於其他基材上,例如海綿,將海綿與碳漿料混合製成耐衝擊與可繞式的超級電容器。未來捲繞式的超級電容器將適合應用於各種能源儲存系統上。

    Supercapacitors are known as electrical double-layer capacitors (EDLC), and electrostatic storage of the electrical energy achieved by separation of charge at the interface between the surface of a conductor electrode and an electrolytic solution electrolyte. Supercapacitors have three mainly advantage in this research: (1) Energy density higher than commercial supercapacitors (>10 Wh/Kg). (2) Using commercial ionic liquids (ILs) with large operating voltage as electrolytes. (3) Long cycle life
    Mesoporous carbons with various pore structures (such as single-pore mesoporous carbon (SP-MC) and multi-pore mesoporous carbon (MP-MC)) and high surface area (ca. >1500 m2g-1) have been successfully synthesized using different silica source. The mesoporous carbons with appropriate pore structure and porosity were used as electrode materials for supercapacitors. By using steam or KOH activation treatment, the surface area and porosity of the mesoporous carbon is increased. In this research, we used a microwave treatment on the mesoporous porous carbons to remove the surface oxygen-containing groups of mesoporous carbon without destroying porosity. A mSP-MC based supercapacitor device with a ionic liquid [EMI]+[TFSI]– as electrolyte has been assembled and demonstrated. The charge-discharge characteristics of the supercapacitor give a specific energy density (80.4 Wh/Kg) and capacitance retention 80% comparable to that of activate carbon based commercial supercapacitor device.
    For mass production of the mesoporous carbon, we provided a simple and reproducible synthesis method by carbon using nano zinc-oxide as solid template instead of silica to avoid using high-corrosion HF solution. To reduce the production of by-product tar with high toxicity, the carbonization procedure can be performed by sealing the PF resin-surfactant-ZnO composite in an air-free container and calcination in a furnace. We demonstrate carbon electrode which combination of conductive carbon paste, with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity. A simple and scalable process has been developed to fabricate mesoporous carbon–sponge supercapacitor electrodes using ordinary kitchen sponges. The attractive performances exhibited by these flexible supercapacitors make them potentially promising candidates for future energy storage systems.

    內文目錄 I 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 中孔洞材料介紹 1 1.1.1 中孔洞氧化矽材 1 1.1.2 中孔洞碳材 2 1.2 電化學基本原理 5 1.2.1 電化學反應槽 6 1.2.2 電容 7 1.2.3電容器串聯 7 1.2.4 電容器並聯 8 1.3 超級電容器簡介 9 1.3.1 平行板電容器 11 1.3.2 三極式電容器 12 1.3.3 二極式電容器 13 1.3.4 電雙層原理 13 1.3.5 Helmholtz電雙層模型 13 1.3.6 Stern電雙層模型 15 1.4 界面活性劑 17 1.4.1 明膠(gelatin)簡介 18 第二章 實驗部分 19 2.1 化學藥品 19 2.2 鹼式合成多重孔洞之中孔洞碳材(孔洞大小: 2 ~ 4 nm以及約20 nm) 21 2.3 鹼式合成中孔洞碳材(孔洞大小: 2~4 nm) 22 2.4 奈米氧化鋅(ZnO)當硬模板應用於合成中孔洞碳材(乾溼含浸法) 24 2.5 奈米氧化鋅(ZnO)作固體模板應用於合成中孔洞碳材(高鹼式合成法) 25 2.6 中孔洞碳材活化法 27 2.7 高含氮量中孔洞碳材(孔洞大小: 2~4 nm) 28 2.7 二極式超級電容器置備方法 30 2.7.1 電極片的製備: 30 2.7.2 樣品前處理: 30 2.7.3 碳膜的製備: 30 2.7.4 二極式碳電極封裝 31 2.7.5 二極式電容器檢測方法 32 A. 循環伏安法(Cyclic Voltammetry, CV): 32 B. 充放電測試:定電流操作(Galvanostatic charge and discharge, CM) 35 C. 交流阻抗分析(AC Impedance) 38 2.8 塗佈式組裝二極式超級電容 43 2.9 實驗儀器鑑定與分析 44 2.9.1 穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 44 2.9.2 氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 44 2.9.3 掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 48 2.9.4 X-射線粉末繞射光譜 (X-Ray Powder Diffraction;XRD) 48 2.9.5 熱重分析儀 (Thermal Gravimetric Analysis;TGA) 49 2.9.6 全反射式-紅外線光譜儀 (Attenuated Total Reflectance-IR;ATR-IR) 49 2.9.7 X光電子能譜儀 (X-ray Photoelectron Spectrometer;XPS) 50 2.9.8 顯微拉曼光譜儀(Microscopes Raman Spectrometer) 50 2.9.9 微波加熱器(microwave radiation heater) 51 第三章 高比表面積中孔洞碳材複合電極材料及其電化學分析測試 52 3.1 研究動機與實驗設計 52 3.2 鹼式合成單一孔徑分佈之中孔洞碳材(Single-Pore Mesoporous Carbon,SP-MC孔洞大小: 2~4 nm) 54 3.2.2 不同酚甲醛樹脂PR620含量對中孔洞碳材孔徑尺度與比表面積之影響 54 3.2.3 利用不同界面活性劑製作出高比表面積之中孔洞碳材 57 3.2.3 鹼式合成中孔洞碳材(孔洞大小: 2~4 nm)以LiClO4/PC為電解質系統下之超級電容特性 58 3.3 以Colloidal SiO2合成多重孔洞之中孔洞碳材(Muti-Pore Mesoporous Carbon,MP-MC) 61 3.3.1 多重孔洞分佈之中孔洞碳材(孔洞大小約 2~4 nm及20 nm)之超級電容器(LiClO4/PC)優勢 64 3.4 搭配離子液體提高超級電容器Energy density 66 3.4.1 利用活化(Activation)技術提高比表面積進而提升比電容值 69 3.4.2 水蒸氣活化處理後中孔洞碳材MP-MC搭配離子液體(EMITFSI)之超級電容器 71 3.4.3 微波加熱處理中孔洞碳材aMP-MC 74 3.4.4 微波加熱處理中孔洞碳材SP-MC 75 3.4.5 mSP-MC搭配離子液體(EMITFSI)製作成超級電容器有卓越效果 77 3.5 綜合結論 80 第四章 發展低汙染與安全之高比表面積中孔洞碳材合成法 81 4.1 研究動機 81 4.2 利用高鹼性水溶液移除氧化矽模板 82 4.2.1 NaOH移除法結論 84 4.3 奈米氧化鋅(ZnO)作為無機模板製作出高比表面積中孔洞碳材 85 4.3.1 以奈米氧化鋅作為固體模板製作出高比表面積含氮多重孔洞中孔洞碳材,MP-MC(ZnO) 85 4.3.2 mMP-MC(ZnO)搭配LiClO4/PC之超級電容器電性測試 88 4.3.3 mMP-MC(ZnO)搭配離子液體EMITFSI之超級電容特性 91 4.4 Energy density保留率與離子液體黏度之影響 93 4.5 封窯式高溫熱裂解碳化中孔洞碳材 96 4.6 綜合結論 98 第五章 捲繞式中孔洞碳電極之超級電容器 99 5.1 研究動機 99 5.2 二極式超級電容之碳電極工藝 100 5.2.1 mMP-MC(ZnO)添加Binder(PTFE)之超級電容器電性影響 100 5.2.2 mSP-MC添加不同比例的binder對超級電容器電性的影響 102 5.3 中孔洞碳材塗佈技術 105 5.3.1 單一孔洞結構中孔洞碳材mSP-MC塗佈之電性結果 107 5.4 綜合結論: 109 第六章 結論 110 參考文獻 112

    1. D. H. Everett, Pure Appl. Chem, 1971, 31, 579-638.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
    3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    4. M. E. Delany and E. N. Bazley, Applied Acoustics, 1970, 3, 105-116.
    5. H. R. Luckarift, J. C. Spain, R. R. Naik and M. O. Stone, Nat Biotechnol, 2004, 22, 211-213.
    6. M. Mureseanu, A. Galarneau, G. Renard and F. Fajula, Langmuir, 2005, 21, 4648-4655.
    7. Y. J. Wang and F. Caruso, Chem Mater, 2005, 17, 953-961.
    8. C. G. Wu and T. Bein, Science, 1994, 266, 1013-1015.
    9. C. G. Wu and T. Bein, Science, 1994, 264, 1757-1759.
    10. C. G. Wu and T. Bein, Chem Mater, 1994, 6, 1109-1112.
    11. T. Abe, Y. Tachibana, T. Uematsu and M. Iwamoto, J Chem Soc Chem Comm, 1995, 1617-1618.
    12. S. C. Tsang, J. J. Davis, M. L. H. Green, H. Allen, O. Hill, Y. C. Leung and P. J. Sadler, J Chem Soc Chem Comm, 1995, 1803-1804.
    13. C. H. Ko and R. Ryoo, Chem Commun, 1996, 2467-2468.
    14. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202-6210.
    15. A. B. Fuertes and D. M. Nevskaia, J Mater Chem, 2003, 13, 1843-1846.
    16. L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem Commun, 2009, 0, 6071-6073.
    17. C. Liang and S. Dai, Journal of the American Chemical Society, 2006, 128, 5316-5317.
    18. Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, International Journal of Hydrogen Energy, 2007, 32, 3976-3980.
    19. J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica Acta, 2005, 50, 3131-3141.
    20. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2006, 45, 4467-4471.
    21. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem Mater, 2005, 17, 3960-3967.
    22. J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
    23. F. Ide and A. Hasegawa, Journal of Applied Polymer Science, 1974, 18, 963-974.
    24. K. Kataoka, A. Harada and Y. Nagasaki, Advanced Drug Delivery Reviews, 2001, 47, 113-131.
    25. J. Eric Hampsey, Q. Hu, L. Rice, J. Pang, Z. Wu and Y. Lu, Chem Commun, 2005, 0, 3606-3608.
    26. B. Sarkar and P. Alexandridis, J Phys Chem B, 2010, 114, 4485-4494.
    27. M. Hartmann, A. Poppl and L. Kevan, J Phys Chem-Us, 1996, 100, 9906-9910.
    28. A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, 2nd Edition, John Wiley & Sons. Inc., Singapore, 1980.
    29. 胡啟章編著, “電化學原理與方法”, 五南圖書, 2002.
    30. 田福助編著, “電化學理論與應用”, 第八版, 新科技, 2001.
    31. 林育潤, “以新穎的聚苯胺植入法增進碳電極之電化學超電容”, 國立成功大學化工研究所碩士論文, 2003.
    32. R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
    33. J. K. Howard, Google Patents, 1984.
    34. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, Journal of Power Sources, 2006, 153, 413-418.
    35. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
    36. J. Gamby, P. Taberna, P. Simon, J. Fauvarque and M. Chesneau, Journal of power sources, 2001, 101, 109-116.
    37. D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
    38. V. Peykov, A. Quinn and J. Ralston, Colloid and Polymer Science, 2000, 278, 789-793.
    39. A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Science and Technology, 2007, 16, 656.
    40. R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 1996, 181, 561-570.
    41. D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 1807-1818.
    42. K. B. Oldham, J Electroanal Chem, 2008, 613, 131-138.
    43. K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, The Journal of Physical Chemistry C, 2007, 111, 7411-7421.
    44. R. W. Impey, M. Sprik and M. L. Klein, Journal of the American Chemical Society, 1987, 109, 5900-5904.
    45. J. Prue and P. Sherrington, Transactions of the Faraday Society, 1961, 57, 1795-1808.
    46. R. Zana, M. Benrraou and R. Rueff, Langmuir, 1991, 7, 1072-1075.
    47. D. E. Kile and C. T. Chiou, Environ Sci Technol, 1989, 23, 832-838.
    48. L. Leibler, H. Orland and J. C. Wheeler, The Journal of chemical physics, 1983, 79, 3550.
    49. M. Bohorquez, C. Koch, T. Trygstad and N. Pandit, J Colloid Interf Sci, 1999, 216, 34-40.
    50. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski, Electrochimica Acta, 2004, 49, 515-523.
    51. J. Gorka, A. Zawislak, J. Choma and M. Jaroniec, Carbon, 2008, 46, 1159-1161.
    52. F.-C. Wu, R.-L. Tseng and R.-S. Juang, Separation and purification technology, 2005, 47, 10-19.
    53. T. Otowa, Y. Nojima and T. Miyazaki, Carbon, 1997, 35, 1315-1319.
    54. M. Molina-Sabio, M. Gonzalez, F. Rodriguez-Reinoso and A. Sepulveda-Escribano, Carbon, 1996, 34, 505-509.
    55. P. Ariyadejwanich, W. Tanthapanichakoon, K. Nakagawa, S. Mukai and H. Tamon, Carbon, 2003, 41, 157-164.
    56. L. Nadjo and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 48, 113-145.
    57. K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 171, 219-230.
    58. C. Amatore and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 85, 27-46.
    59. M. Doyle, T. F. Fuller and J. Newman, J Electrochem Soc, 1993, 140, 1526-1533.
    60. B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J Electrochem Soc, 1983, 130, 1825-1836.
    61. D. Harrington and B. Conway, Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 221, 1-21.
    62. B. Conway, L. Bai and D. Tessier, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 161, 39-49.
    63. J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, 2003, pp. 1098-1104.
    64. F. MANSFELD, Corrosion, 1976, 32, 143-146.
    65. A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on, IEEE, 2003, pp. 35-40.
    66. D. McCumber, Journal of Applied Physics, 1968, 39, 3113-3118.
    67. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 570-580.
    68. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 478-485.
    69. M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
    70. K. Jüttner, Electrochimica Acta, 1990, 35, 1501-1508.
    71. F. Mansfeld, Journal of Applied Electrochemistry, 1995, 25, 187-202.
    72. 蔡定平, 2009.
    73. A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız and M. Yalçın, J Colloid Interf Sci, 2004, 269, 310-314.
    74. D. Langmuir, P. Hall and J. Drever, Environmental Geochemistry, Englewood Cliffs: Prentice-Hall, 1997.
    75. O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, Journal of the Chemical Society, Chemical Communications, 1993, 724-726.
    76. 王浩静, 王红飞, 李东风, 朱星明, 贺福 and 王心葵, 新型炭材料, 2005, 20, 157-163.
    77. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., 1974, 1.
    78. W. Bond, Acta Crystallographica, 1960, 13, 814-818.
    79. A. Patterson, Physical review, 1939, 56, 978.
    80. A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor Mesopor Mat, 2009, 117, 75-90.
    81. U. Holzwarth and N. Gibson, Nature Nanotechnology, 2011, 6, 534-534.
    82. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, Nature, 2009, 458, 872-876.
    83. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. Silva, Journal of Applied Physics, 1996, 80, 440.
    84. K.-W. Chang, Z.-Y. Lim, F.-Y. Du, Y.-L. Yang, C.-H. Chang, C.-C. Hu and H.-P. Lin, Diamond and Related Materials, 2009, 18, 448-451.
    85. Y.-C. Lin, S.-H. Wu, C.-W. Liu, Z.-Y. Lim, C.-W. Huang, H.-P. Lin, S. Deng, M.-C. Yang, C.-Y. Tang and C.-Y. Lin, Journal of Solid State Electrochemistry, 2008, 12, 895-901.
    86. Y.-C. Lin, C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Chem Lett, 2007, 36, 1258-1259.
    87. C.-Y. Chang-Chien, C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Journal of Porous Materials, 2006, 13, 195-199.
    88. C. Y. Chang‐Chien, C. H. Hsu, T. Y. Lee, C. W. Liu, S. H. Wu, H. P. Lin, C. Y. Tang and C. Y. Lin, European Journal of Inorganic Chemistry, 2007, 2007, 3798-3804.
    89. C.-H. Hsu, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Materials chemistry and physics, 2006, 100, 112-116.
    90. H.-P. Lin, C.-Y. Chang-Chien, C.-Y. Tang and C.-Y. Lin, Micropor Mesopor Mat, 2006, 93, 344-348.
    91. M. S. Halper and J. C. Ellenbogen, Report No. MP 05W0000272, The MITRE Corporation, McLean, Virginia, 2006.
    92. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon and W. Van Schalkwijk, Nature materials, 2005, 4, 366-377.
    93. P. Simon and Y. Gogotsi, Nature materials, 2008, 7, 845-854.
    94. S. Ono, S. Seki, R. Hirahara, Y. Tominari and J. Takeya, Appl Phys Lett, 2008, 92, 103313-103313-103313.
    95. Z. Lei, N. Christov, L. L. Zhang and X. S. Zhao, J Mater Chem, 2011, 21, 2274-2281.
    96. D. Hulicova‐Jurcakova, M. Seredych, G. Q. Lu and T. J. Bandosz, Adv Funct Mater, 2009, 19, 438-447.
    97. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski and E. Frackowiak, Chemical physics letters, 2005, 404, 53-58.
    98. A. Pandolfo and A. Hollenkamp, Journal of Power Sources, 2006, 157, 11-27.
    99. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu and T. J. Bandosz, Carbon, 2008, 46, 1475-1488.
    100. C. Peng, S. Zhang, D. Jewell and G. Z. Chen, Progress in Natural science, 2008, 18, 777-788.
    101. S. R. Kamath and A. Proctor, Cereal chemistry, 1998, 75, 484-487.
    102. A. Lewandowski and A. Świderska, Solid State Ionics, 2003, 161, 243-249.
    103. K. Xu, Chemical Reviews-Columbus, 2004, 104, 4303-4418.
    104. A. Nomura, K. Ohno, T. Fukuda, T. Sato and Y. Tsujii, Polymer Chemistry, 2012, 3, 148.
    105. P. Rodatz, G. Paganelli, A. Sciarretta and L. Guzzella, Control Engineering Practice, 2005, 13, 41-53.
    106. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, Phys Chem Chem Phys, 2011, 13, 17615-17624.
    107. L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong and J. Chen, ACS nano, 2011, 6, 656-661.
    108. W. Chen, R. Rakhi and H. Alshareef, J Mater Chem, 2012, 22, 14394-14402.

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE