| 研究生: |
林昆鋒 Lin, Kun-Feng |
|---|---|
| 論文名稱: |
CNC運動控制器之軟體整合開發與模擬 Integrated Software Development and Simulation for CNC Motion Controllers |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan 蔡明祺 Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 解譯器 、插值器 、加減速 、多節預覽 |
| 外文關鍵詞: | Interpreter, Interpolator, Multi-block Look ahead, Acceleration/Deceleration |
| 相關次數: | 點閱:63 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以MATLAB 軟體為發展環境,在PC 端自行開發一可載入數值控制碼之解譯器與插值器環境。其功能包含可載入符合RS-274D 標準之數值控制碼、以不同曲線型態之插值器求出各軸運動命令、以多節預覽實現各種前加減速功能,此外並以一實務上常用之串級式伺服控制架構做為CNC 運動控制系統之動態模擬,此一整合模擬環境將有利於進一步開發實體之CNC 運動控制模組。所建立之解譯器與插值器主要是針對直線、圓弧、螺旋與NURBS 曲線而設計,其特點為利用多節預覽搭配數值積分事先求得加工曲線總長度,以達到前加減速之功能;而在加減速規劃的部分,則是應用數位旋積及多節預覽規劃前加減速功能,以本文
提出之混合式數位旋積法經模擬結果顯示可有效降低轉角處之進給率並縮短加工時間。同時,所開發之軟體模擬環境亦可提供使用者在正式加工前,進行加工路徑之快速模擬,可達到節省加工時間之目的。最後在整合之模擬環境下,利用命令前饋控制器、摩擦力前饋補償及背隙補償,
克服CNC循圓測試中常見的伺服延遲及圓尖角誤差,以達到高速高精度加工之需求。
In this thesis, an integrated environment, which combines the machining code interpretation and interpolation for CNC motion control is developed
based on the MATLAB platform. This integrated software environment provides several key features, including: an interpreter which is capable of
interpreting the RS-274D standard NC codes, an interpolator which can convert different kinds of parametric curves into axis motion commands, and
the function of acceleration/deceleration before interpolation based on the multi-block look-ahead concept. In addition, the mathematical model of a
standard cascaded servomechanism is developed for the dynamic simulation of the CNC motion controller. This integrated environment is beneficial to the implementation of CNC control module. The interpreter and the interpolator
developed in this study are focused on the cases of lines, circles, helical curves, and NURBS curves. Furthermore, by combining the digital convolution, multi-block look-ahead function, and numerical integration for calculating the total distance of the machining curve in advance, the acceleration/deceleration before interpolation can be accomplished. Simulation results verified that the proposed method, Hybrid Digital Convolution, is able to reduce the feed rate at the connection of each block effectively so that the net machining time can also be saved. In addition, the integrated software environment can be used for a preview of the desired machining trajectory, which helps the users to debug the NC programs. Finally, compensating strategies are designed and applied to the servo control units to overcome the servo lag and quadrant protrusion which are ordinary in the CNC circulating test.
[1] Bedi, S., Ali, I. and Quan, N., “Advanced interpolation techniques for CNC machines,”
Journal of Engineering for Industry, Transactions of the ASME, Vol. 115, 329-336,
1993.
[2] Canudas de Wit, C., Olsson, H., Astrom, K. J. and Lischinsky, P., “A new model for
control of systems with friction,” IEEE Transaction on Automatic Control, Vol. 40, No.
3, pp. 419-425, Mar, 1995.
[3] Chen, C. S. and Lee, A. C., “New Direct Velocity and Acceleration Feedforward
Tracking Control in a Retrofitted Milling Machine,” Int. J. Japan Soc. Prec. Eng., Vol.
33, No. 3, pp. 178-184, 1999.
[4] Chou, J. J. and Yang, D. C. H., “Command Generation for Three-Axis CNC
Machining,” Journal of Engineering for Industry, Transactions of the ASME, Vol. 113,
pp. 305-310, Aug. 1991.
[5] Karnopp, D., “Computer Simulation of Stick-Slip Friction in Mechanical Dynamic
Systems,” ASME Journal of Dynamic Systems, Measurement and Control, Vol.107, pp.
100-103, Mar. 1985.
[6] FANUC Corp., FANUC AC Servo Motor α Series Parameter Maunual, 1997.
[7] FANUC Corp., FANUC Series Model A Description, 1997.
[8] Han, G. C., Kim, D. I., Kim, H. G., Nam, K., Choi, B. K. and Kim, S.K., “A high speed
machining algorithm for CNC machine tools,” The 25th Annual Conference of the
IEEE, Vol. 3, pp.1493-1497, 1999.
[9] Huang, J. T. and Yang, D. C. H., “Precision Command Generation for Computer
Controlled Machines,” Precision Machining: Technology and Machine Development
and Improvement, ASME, PED-Vol. 58, 1992.
[10] Jeon, J. W., “A generalized Approach for the Acceleration and Deceleration of CNC
Machine Tools,” IEEE IECON 22nd International Conference, Vol. 2, pp.1283-1288,
1996.
[11] Jeon, J. W. and Ha, Y. Y., “A Generalized Approach for the Acceleration and
Deceleration of Industrial Robots and CNC Machine Tools,” IEEE Transactions on
Industrial Electronics, Vol. 47, No. 1,pp. 133-139, Feb, 2000
[12] Kim, D.II., Song, J.II. and Kim, S., “Dependence of machining accuracy on
acceleration/deceleration and interpolation methods in CNC machine tools,” IEEE
80
Industry Applications Society Annual Meeting, Vol. 3, pp. 1898-1905, 1994.
[13] Koren, Y., Computer Control of Manufacturing Systems, McGraw-Hill, New York,
1983.
[14] Koren, Y., Lo, C. C. and Shpitalni, M., “CNC interpolators: algorithms and analysis,”
Manufacturing Science and Engineering, ASME, PED-Vol. 64, pp.83-92, 1993.
[15] Koren, Y., “Control of machine tools,” Transactions of the ASME Journal of
Manufacturing Science and Engineering, Vol. 119, No. 4(B), pp.749-755, 1997.
[16] Masory, O., “Improving Contouring Accuracy of NC/CNC Systems With Additional
Velocity Feedforward Loop,” Transactions of ASEM journal of Engineering for
Industry, Vol. 108, pp. 227-230, 1986.
[17] Shpitalni, M., Koren, Y. and Lo, C. C., “Realtime curve interpolators,” Computer
Aided Design, Vol. 26, No. 11, pp. 832-838, 1994.
[18] Walrath, C. D., “Adaptive Bearing Friction Compensation based on Recent
Knowledge of Dynamic Friction,” Automatica, Vol. 20, No. 6, pp.717-727, 1984.
[19] Yang, D. C. H. and Kong, T., “Parametric interpolator versus linear interpolator for
precision CNC machining,” Computer Aided Design, Vol. 26, No. 3, pp. 225-234, Mar.
1994.
[20] Yeh, S. S. and Hsu, P. L. “Speed-controlled interpolator for machining parametric
curves,” Computer Aided Design, Vol. 31, No. 5, pp. 349-357, Apr. 1999.
[21] Yeh, S. S. and Hsu, P. L. “Adaptive-feed rate interpolation for parametric curves with
a confined chord error,” Computer Aided Design, Vol. 34, pp. 229-237, 2002.
[22] Yong, T. and Narayanaswami, R., “Aparametric interpolator with confined chord
errors, acceleration and deceleration for NC machining,” Computer-Aided Design, Vol.
35, pp. 1249-1259, Mar. 2003.
[23] 李宜達, 控制系統設計與模擬: 使用MATLAB/SIMULINK,全華科技圖書,民國
八十六年。
[24] 李建翔, 具有速度及加速度限制之多軸運動控制, 碩士論文,國立台灣科技大學
電機工程學系,民國八十九年。
[25] 吳楷聲、蔡明祺,“ 伺服系統之實用參數設計,” 第十九屆機械年會,民國九十
一年。
[26] 邱奕範, 命令及摩擦力前饋控制於工具機之研究,碩士論文,國立成功大學機械
工程學系,民國九十一年。
81
[27] 張智星,MATLAB 程式設計與應用,清蔚科技出版,民國八十九年。
[28] 郭洲成,CNC 伺服控制器之NURBS 即時插值器設計與實現,碩士論文,國立成
功大學機械工程學系,民國八十九年。
[29] 楊憲東, 精密機械控制原理與模擬,全華科技圖書,民國八十七年。
[30] 鄭中緯, 運動控制器之即時NURBS 曲線及曲面插值器設計與實現,博士論文,
國立成功大學機械工程學系,民國九十二年。
[31] 嚴之揚、盧春生,“工具機專輯-車床演進史,” 機械月刊,第二十七卷第三期,
pp. 470-476,民國九十年三月號。