| 研究生: |
周倉民 Zhou, Chang-Min |
|---|---|
| 論文名稱: |
添加微量氧化鋁對於釔安定正方晶相氧化鋯(3Y-TZP)陶瓷的微結構及燒結行為之影響 Effect of a Minute Addition of Alumina on the Microstructure and Sintering Behavior of 3Y-TZP Ceramics |
| 指導教授: |
向性一
Hsiang, Hsing-I 陳智成 Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 釔安定正方晶相氧化鋯陶瓷 、共沉 |
| 外文關鍵詞: | 3Y-TZP Ceramics, co-precipitation |
| 相關次數: | 點閱:61 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用化學共沉法,將微量氧化鋁均勻混合於氧化鋯之中,製備Y-TZP/Al2O3奈米複合粉末,並藉由燒結收縮的分析及微結構的觀察,探討微量氧化鋁在氧化鋯燒結行為上所扮演的角色。
實驗結果發現,添加微量(0.25wt%)氧化鋁有抑制釔安定正方晶相氧化鋯晶粒成長及促進燒結體緻密化的功效。在粉末煆燒過程中,由於氧化鋁和氧化鋯之間的交互作用,減緩了氧化鋯的晶粒成長,且在燒結過程中,氧化鋁會促使氧化鋯產生氧空缺而有促進燒結的功效。本研究藉由TEM的觀察及阻抗分析發現,當燒結溫度超過1275℃時,氧化鋁傾向偏析至晶界,且隨著燒結溫度的升高,偏析的現象愈顯著;剛從氧化鋯中偏析之氧化鋁是以非晶質相(Amorphous phase)的型態存在於晶粒之交界處。而且氧化鋁的偏析也導致燒結過程中晶界的遷移速率降低,進而減緩氧化鋯晶粒之成長。
In this study, well-dispersed Y-TZP/Al2O3 nano-powders (designated as Y-TZP-A) have been prepared via a chemical co-precipitation method. The resultant samples were characterized using transmission electron microscopy (TEM) and resistivity measurements. The effect of alumina addition on the microstructure and sintering behavior of 3Y-TZP ceramics was discussed.
The experimental results indicate that a minute addition (0.25wt%) of alumina can suppress the grain growth of Y-TZP and promote the densification of sintering body. It is due to the generation of oxygen vacancy which is resulted from the mutual interaction between zirconia and alumina. Furthermore, the TEM and resistivity analysis results indicate that alumina would segregate to the grain boundary when the sample was sintered at temperature higher than 1275℃. The amount of segregation increases apparently with increasing the sintering temperature. The segregated alumina was characterized as the Al-rich amorphous species at the grain boundary, which reduced the mobility of grain-boundary and retarded the grain growth of Y-TZP.
1. S. Mullens, J. Cooymans, C. Smolders & J. Luyten, “Processing Oxide-Based Nanocomposites”, Am. Ceram. Soc. Bull. Jan., 9101 (2005).
2. 尹衍升、陳守剛、劉英才,氧化鋯陶瓷的參雜穩定及生長動力學,化學工業出版社,2004。
3. R. C. Garvie, "The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 69〔4〕, 1238 (1965).
4. J. Luo & R. Stevens, “Tetragonality of Nanosized 3Y-TZP Powders”, J. Am. Ceram. Soc., 82〔7〕, 1922 (1999).
5. 楊脩生,具再分散性之奈米級氧化鋯結晶粒子之合成研究,國立中央大學化學工程與材料工程研究所碩士論文,2002。
6. 李懋強,超細粉體的化學合成,中國粉末技術,〔6〕,21 (2000)。
7. J. Ding, T. Tsuzuki & P. G. McCormick , “Mechanochemical
synthesis of ultrafine ZrO2 powder”, “NanoStructured Materials, 8
〔1〕, 75 (1997).
8. A. C. Dodd, T. Tsuzuki, P.G. McCormick, “Nanocrystalline zirconia powders synthesised by Mechanochemical processing”, Mater. Sci. Eng., A301, 54 (2001).
9. M. A. Blesa & A. J. G. Maroto, “Hydrous zirconium dioxide:interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures”, J. Mater. Sci., 20, 4601 (1985).
10. C.-W. Kuo, Y. H. Lee, K. Z. Fung & M. C. Wang, “Effect of Y2O3 addition on the phase transition and growth of YSZ nanocrystallites prepared by a sol-gel process”, J. Non-Crystalline Solids, 351, 304 (2005).
11. V. V. Srdic, M. Winterer & H. Hahn, “Sintering Behavior of Nanocrystalline Zirconia Doped with Alumina Prepared by Chemical Vapor Synthesis”, J. Am. Ceram. Soc., 83〔8〕, 1853 (2000).
12. J. Santoyo-Salazar, G. Gonzaleza, J.A. Ascencio, J. Tartaj-Salvador & J.A. Chavez-Carvayar, “Novel yttria-stabilised zirconia–alumina tetragonal phase obtained by co-precipitation”, Journal of Crystal Growth, 290, 307 (2006).
13. P. Durán, M. Villegas, J.F. Fernández, F. Capel & C. Moure, “ Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders”, Mater. Sci. Eng., A232, 168 (1997).
14. 李建興,部分穩定氧化鋯粉末之自製、性質及燒結之研究,國立成功大學礦冶及材料科學研究所碩士論文,1986。
15. Tosoh 氧化鋯粉末產品目錄。
16. P. Durh, M. Villegas, F. Capel, P. Recio & C. Moure, “Low-temperature Sintering and Microstructural Development of Nanocrystalline Y-TZP Powders”, J. Eur. Ceram. Soc., 16, 945 (1996).
17. 澎信文,添加微量氧化鋁對於氧化鋯陶瓷材料製備與燒結行為之研究,材料年會論文集,(2005)。
18. D. D. Upadhyaya, M. R. Gonal & R. Prasad, “Studies on crystallization behaviour of 3Y-TZP/Al2O3 composite powders”, Mater. Sci. Eng., A270, 133 (1999).
19. 林世忠,陳化處理對化學沉澱法生成之奈米二氧化鈦粉末之晶粒長及相轉換的影響,國立成功大學資源工程所碩士論文,2004。
20. 姚壬謙,化學共沉法製備CO2Z鐵氧磁體粉末之生成機構研究,國立成功大學資源工程所碩士論文,2004。
21. 陳智成,氧化鋁-氧化鋯陶瓷複合材料之製備與性質研究,國立成功大學礦冶及材料科學研究所博士論文,1994。
22. J. L. Shi, J. H. Gao, B. S. Li & T. S. Yen, “Processing of Nano- Y-TZP/Al2O3 Composites. Π:Compaction and Sintering Behaviour of Nano-Y-TZP/Al2O3 Composite Powders”, J. Eur. Ceram. Soc., 15, 967 (1995).
23. J. K. Lee, M.-J. Kim & E.-G. Lee, “Influence of dispersed-alumina particle size on the fracture toughness of 3 mol% yttria-stabilized zirconia polycrystals (3Y-TZP)”, J. Mater. Sci. Lett., 21, 259 (2002).
24. V. V. Srdic, M. Winterer, A. Moller, G. Miehe & H. Hahn, “Nanocrystalline Zirconia Surface-Doped with Alumina:Chemical Vapor Synthesis, Characterization, and Properties”, J. Am. Ceram. Soc., 84, 2771 (2001).
25. S. Y. Yang, J.-H. Lee, J.-J. Kim & J.-S. Lee, “Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition”, Solid State Ionics, 172, 413 (2004).
26. Z. Lv, R. Guo, P.Yao & F. Dai, “Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elements”, Materials and Design, 28, 1399 (2007).
27. S.-J. L. Kang, “Sintering”, Elsevier Butterworth-Heinemann, (2005).
28. Y. M. Chiang, “Physical Ceramics”, John Wiley & Sons, Inc., (1997).
29. K. Tsukama & M. Shimada, “Thermal stability of Y2O3-partially stabilized zirconia (Y-PSZ) and Y-PSZ/Al2O3 composites”, J. Mater. Sci. Lett., 4, 857 (1985).
30. J.-F. Li & R. Watanabe, “Influence of a small amount of Al2O3 addition on the transformation of Y2O3-partially stabilized ZrO2 during annealing”, J. Mater. Sci, 32, 1149 (1997).
31. T. Sato & M. Shimada, “Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water”, J. Mater. Sci., 20, 3988 (1985).
32. A. Madubuonu, H. Drings, R. Roewer & H.-E. Schaefer, “Grain size reduction in fully dense nanocrystalline yttria-stabilized zirconia by Al doping”, phys. Stat. Sol. (a), 203〔8〕, R64 (2006).
33. M. Miyayama, H. Yanagida & A. Asada, “Effects of Al2O3 Additions on Resistivity and Microstructure of Yttria-Stabilized Zirconia”, Am. Ceram. Soc. Bull., 64, 660 (1985).
34. L. M. Navarro, P. Recio, J. R. Jurado, & P. Duran, “Preparation and Properties Evaluation of Zirconia-Based/Al2O3 Composites as Electrolytes for Solid Oxide Fuel Cell Systems, Part III, Mechanical and Electrical Characterization”, J. Mater. Sci., 30, 1949 (1995).
35. X. Guo, “space-charge conduction in yttria and alumina codoped-zirconia”, Solid State Ionics, 96, 247 (1997).
36. E. Sato, H. Morioka, K. Kuribayashi & D. Sundararaman, “Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia”, J. Mater. Sci., 34, 4511(1999).
37. A. J. Feighery & J. T. S. Irvine, “Effect of Alumina Additions upon Electrical Properties of 8 mol% Yttria-Stabilized Zirconia”, Solid State Ionics, 121, 209(1999).
38. G. M. Wolten, “Diffusionless Phase Transformations in Zirconia and Hafnia”, J. Am. Ceram. Soc., 46, 418 (1963).
39. T. Sato & M. Shimada, “Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water”, J. Am. Ceram. Soc., 68〔6〕, 356 (1985).
40. F. F. Lange, G. L. Dunlop & B. I. Davis, “Degradation During Aging of Transformation-Toughened ZrO2-Y2O3 Materials at 250℃”, J. Am. Ceram. Soc., 69〔3〕, 237 (1986).
41. M. Yoshimura, T. Noma, K. Kawabata & S. Somiya, “Role of H2O on the degradation process of Y-TZP”, J. Mater. Sci. Lett., 6, 465 (1987).
42. J. Frenkel, “Kinetic Theory of Liquids” (Oxford University Press, New York, 1946)
43. M. F. Yan, “Space charge , elastic field, and dipole contribution to equilibrium solute segregation at interfaces”, J. Appl. Phys. 54〔2〕, 764 (1983).
44. Y.-M. Chiang & T. Takagi, “Grain-boundary chemistry of barium Titanate and strontium Titanate:I , High-temperature equilibrium space charge”, J. Am. Ceram. Soc., 73〔11〕, 3278 (1990).
45. H. J. Avila-Paredes & S. Kim, “The effect of segregated transition metal ions on the grain broundary risistivity of gadolinium doped ceria:Alteration of the space charge potential”, Solid State Ionics, 177, 3075 (2006).
46. S.-L. Hwang & I-W. Chen, “Grain size control of tetragonal zirconia polycrystals using the space charge concept”, J. Am. Ceram. Soc., 73〔11〕, 3269 (1990).
47. J.-S. Lee & D.-Y. Kim, “Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal”, J. Mater. Res., 16〔9〕, 2739 (2001).
48. X. Guo, “Solute segregation at the space-charge layers of stabilized zirconia: an opportunity for ameliorating conductivity”, J. Eur. Ceram. Soc., 16, 575 (1996).
49. J. Cho, J. M. Rickman, H. M. Chan & M. P. Harmer, “Modeling of
grain-boundary segregation behavior in aluminum oxide”, J. Am.
Ceram. Soc., 83〔2〕, 344 (2000).
50. K. Matsui, H. Horikoshi, N. Ohmichi & M. Ohgai,“Cubic-Formation and Grain-Growth Mechanisms in Tetragonal Zirconia Polycrystal”,
J. Am. Ceram. Soc., 86〔8〕, 1401 (2003).
51. I. M. Ross, W. M. Rainforth, D.W. McComb, A. J. Scott & R. Brydson”,“The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y–TZP)”, I. M. Ross, Scripta Materialia, 45, 653 (2001).
52. K. Matsui, N. Ohmichi & M. Ohgai, ”Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal”, J. Mater. Res.,
21〔9〕, 2278 (2006).
53. X. Guo & R. Yuan, “Roles of alumina in zirconia-based solid electrolyte”, J. Mater. Sci.”, 30, 923 (1995).
54. J. L. Shi, B. S. Li, M. L. Ruan & T. S. Yen, “Processing of Nano-Y-TZP/Al2O3 Composites. I: Preparation and Characterization of Nano-Y-TZP/Al2O3 Composite Powders”, J. Eur. Ceram. Soc., 15, 959 (1995).
55. A. L. Vasiliev & N. P. Padture, “Coatings of metastable ceramics
deposited by solution-precursor plasma spray: II. Ternary
ZrO2–Y2O3–Al2O3 system”, Acta Materialia, 54, 4921 (2006).
56. V. Srdic & L. Radonjic, “Interactions in the Sol-Gel Processing of Alumina-Zirconia Composites”, J. Eur. Ceram. Soc., 14, 237 (1994).
57. J. E. Bauerle, “STUDY OF SOLID ELECTROLYTE POLARIZATION BY A COMPLEX ADMITTANCE METHOD”, J. Phys. Chem. Solids, 30, 2657 (1969).
58. X. Guo, “Roles of Alumina in Zirconia for Functional Applications”, J. Am. Ceram. Soc., 86〔11〕, 1867 (2003).
59. A. L. Vasiliev, Ni. P. Padture & X. Ma, “Coatings of metastable ceramics deposited by solution-precursor plasma spray: I. Binary ZrO2–Al2O3 system”, Acta Materialia, 54, 4913 (2006).