簡易檢索 / 詳目顯示

研究生: 何昇翰
Ho, Sheng-Han
論文名稱: 異向性彈性力學MATLAB程式設計
MATLAB Programming of Anisotropic Elasticity
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 152
中文關鍵詞: 異性性彈性力學史磋公式複變數MATLAB
外文關鍵詞: Anisotropic Elasticity, Stroh Formalism, Complex Variable, MATLAB
相關次數: 點閱:111下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用商業套裝軟體MATLAB編寫各類異向性彈性力學問題之程式碼;以史磋公式(Stroh Formalism)為出發點,該理論使用複變數的概念,建構出一套完善的架構來處理異向性彈性力學問題。隨著這幾年來純熟的發展,處理的問題越來越多樣化,計算出來的物理量也都十分準確,是一套非常實用的運算工具,其中所處理的問題包括:無限域與半無限域、楔形板與界面角、孔洞、裂縫、異質、接觸、熱效應、壓電材料、耦合疊層板等問題。

      This research uses the MATLAB software to write the computer codes for the displacement and stress distribution of some anisotropic elasticity problems. A complex variable method-Stroh formalism is employed for the anisotropic elasticity. Various elasticity problems have been solved by this theory and coded in this thesis, such as the infinite space, half-space, wedges, interface corners, holes, cracks, inclusions, contact problems, thermoelastic problems, and the problems with piezoelectric materials and composite laminates.

    目錄 摘要 英文摘要 誌謝 目錄.......................................................i 表目錄.....................................................v 圖目錄....................................................ix 符號說明.................................................xiv 第一章  緒論.............................................1 1.1 前言..............................................1 1.2 研究動機..........................................2 1.3 研究目的..........................................2 第二章  異向性彈性力學...................................4 2.1 材料組成律........................................4 2.2 史磋公式..........................................6 2.2.1 二維問題...........................................6 2.2.2 耦合問題..........................................16 第三章  程式架構........................................18 3.1 程式流程.........................................18 3.2 主程式...........................................19 3.3 材料常數副程式...................................22 3.4 特徵值與特徵函數副程式...........................23 3.5 各式問題數值與圖形輸出副程式.....................24 3.6 其他副程式.......................................25 第四章  程式設計........................................28 4.1 多值函數.........................................28 4.1.1 映射函數..........................................28 4.1.2 反函數............................................34 4.1.3 冪次函數..........................................36 4.1.4 對數函數..........................................38 4.2 奇異值...........................................40 4.3 積分與級數解.....................................41 4.4 特徵方程式.......................................43 4.5 多材料輸入.......................................46 第五章  各類異向性彈性力學問題..........................48 5.1 無限平板、半無限平板、雙材料.....................50 5.1.1 無限平板..........................................50 5.1.2 半無限平板........................................56 5.1.3 雙材料............................................59 5.2 楔形板與介面角...................................63 5.2.1 單材料楔形板......................................63 5.2.2 多材料楔形板......................................65 5.3 異質問題.........................................68 5.3.1 彈性異質..........................................68 5.3.2 剛性異質..........................................71 5.4 其他問題.........................................75 5.4.1 孔洞..............................................75 5.4.2 裂縫..............................................77 5.4.3 接觸..............................................82 5.4.4 熱效應............................................86 5.4.5 疊層板............................................89 第六章  結論............................................95 參考文獻..................................................96 附錄A ....................................................99 自述.....................................................152

    參考文獻

    [1] S.G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Body,” Mir Publishers, Moscow, 1981.
    [2] C. Hwu, “Anisotropic Elastic Plates,” Springer, New York, 2010.
    [3] T.C.T. Ting, “Anisotropic Elasticity Theory and Applications,” Oxford Science Pub, 1996.
    [4] A.N. Stroh, “Dislocations and cracks in anisotropic elasticity,” Phil. Mag. 3, 625-646, 1958.
    [5] A.N. Stroh, “Steady state problems in anisotropic elasticity,” J. Math. Phys. 41, 77-103, 1962.
    [6] 黃文昇,“異向性彈性力學式窗化程式設計”,成功大學航空太空工程研究所,2009。
    [7] M.C. Hsieh and C. Hwu, “Explicit Solutions for the Coupled Stretching-Bending Problems of Holes in Composite Laminates,” International Journal of Solids and Structures, Vol. 40, No. 15, pp. 3913-3933, 2003.
    [8] C. Hwu and M.C. Hsieh, “Extended Stroh-Like Formalism for the Electro-Elastic Composite Laminates and Its Applications to Hole Problems,” Smart Materials and Structures, Vol. 14, pp. 56-68, 2005.
    [9] M.C. Hsieh and C. Hwu, “Hygrothermal Stresses in Unsymmetric Laminates Disturbed by Elliptical Holes,” ASME Journal of Applied Mechanics, Vol.73, pp. 228-239, 2006.
    [10] C. Hwu, “Anisotropic Elasticity with MATLAB,” private communication, 2010.
    [11] 何昇翰,“異向性彈性力學程式設計說明”,成功大學航空太空工程研究所,2010。
    [12] C. Hwu, “Special Notes on Computer Programming via Complex Variable Formulation,” private communication, 2010.
    [13] C. Hwu and W.J. Yen, “On the Anisotropic Elastic Inclusions in Plane Elastostatics,” ASME J. Applied Mechanics, Vol. 60, pp.626-632, 1993.
    [14] 王文耀,“含各型孔洞或剛體介質之異向性平板分析”,成功大學航空太空工程研究所,1990。
    [15] 洪維恩著,“Matlab7程式設計”,旗標出版社,2005。
    [16] S. Timoshenko and J.N. Goodier, “Theory of elasticity”, 3d ed., New York, McGraw-Hill, 1970.
    [17] A. Gil, J. Segura and N.M. Temme, “Numerical Methods for Special Functions”, SIAM, Philadelphia, 2007.
    [18] 郭泰良,“異向性彈性力學期末報告(複材疊層板問題)”,成功大學航空太空工程研究所,2009。
    [19] 黃豪義,“異向性彈性力學期末報告(裂縫問題)”,成功大學航空太空工程研究所,2009。
    [20] 陳昱志,“異向性彈性力學期末報告(接觸問題)”,成功大學航空太空工程研究所,2009。
    [21] 李政錡,“複材結構開口之MATLAB程式設計”,國科會大專生專題研究計畫報告,2010。
    [22] C. Hwu, “Anisotropic Plates With Various Openings Under Uniform Loading or Pure Bending,” ASME J. Applied Mechanics, Vol.57, No.4, pp.700-706, 1990.
    [23] T.L. Anderson, “Fracture Mechanics Fundamentals and Applications,” Taylor & Francis, 2005.
    [24] C. Hwu, “Thermal Stresses in an Anisotropic Plate Disturbed by an Insulated Elliptic Hole or Crack,” ASME J. Applied Mechanics, Vol.57, No.4, pp. 916-922, 1990.
    [25] C.C. Lin and C. Hwu, “Uniform Heat Flow Disturbed by an Elliptical Rigid Inclusion Embedded in an Anisotropic Elastic Matrix,” J. Thermal Stresses, Vol. 16, No.2, pp.119-133, 1993.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE