| 研究生: |
鄭全淕 Jeng, Chiuan-Lu |
|---|---|
| 論文名稱: |
應用非接觸式電能傳輸於電子紙顯示器之研究 Study on Contactless Power Transfer for Electronic Paper Display |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 非接觸式電能傳輸 、電子紙 、控制訊號 |
| 外文關鍵詞: | contactless power transfer, electronic paper, control signal |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在針對非接觸式電能傳輸技術應用於電子紙感應牆磚,設計線型感應線圈與多組拾取器組合而成的感應耦合結構。文中首先藉由磁場模擬軟體進行線型線圈與多環矩形線圈模擬分析,選擇磁場分布較均勻之耦合結構,並將線型線圈結構與多環矩形線圈結構以無間距方式提升傳輸效率,其依據模擬結果選用接收電能效率較佳之拾取線圈尺寸。且經由分析操作於諧振之特性,以提升整體系統電能傳輸能力,並利用調變機制以達到有效控制訊號之功能。經由實驗證明,此系統可提供所需能量給予電子紙使用,並藉由控制電路使電子紙變色,實現整體系統架構之可行性。最後,本論文針對單一拾取器進行實測驗證,其最大電能傳輸效率為61.6%。
This thesis aims at the development of the electronic paper induction tiles with line type and multi-block pick-up inductively coupling structure. In this thesis, the magnetic field simulation software is used to simulate the magnetic distribution of the linear coils and the overlapping-matrix coils. The coupling structure with uniform magnetic field distribution and the suitable size of the coil are selected to improve the transmission efficiency. By analyzing the characteristics of the operation in the resonant condition, it can show that the overall system power transfer capability can be improved in this situation. In addition, with the use of the amplitude shift keying(ASK) modulation, the control signal of the electronic paper can be realized and the color of the electronic paper can be changed simultaneously. Based on the experimental results, the maximum efficiency can be up to 61.6%
[1] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015.
[2] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” IEE Proceedings - Electric Power Applications, vol. 147, no. 1, pp. 37–43, Jan. 2000.
[3] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059–2067, Apr. 2013.
[4] L. Chen, G. R. Nagendra, J. T. Boys, and G. A. Covic, “Double-coupled systems for IPT roadway applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 37-49, Mar. 2015.
[5] C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, and D. Anderson, “High-efficiency contactless power transfer system for electric vehicle battery charging application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 65-74, Mar. 2015.
[6] Y. H. Kim and K. H. Jin, “Design and implementation of a rectangular-type contactless transformer,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5380–5384, Dec. 2011.
[7] H. Z. Beh, G. A. Covic, and J. T. Boys, “Wireless fleet charging system for electric bicycles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 75-86, Mar. 2015.
[8] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148–157, Feb. 2004.
[9] H. Z. Beh, G. A. Covic, and J. T. Boys, “Investigation of magnetic couplers in bicycle kickstands for wireless charging of electric bicycles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 87-100, Mar. 2015.
[10] D. Rozario, N. A. Azeez, and S. S. Williamson, “Analysis and design of coupling capacitors for contactless capacitive power transfer system,” in Proc. IEEE ITEC, 2016, pp. 1-7.
[11] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[12] I. G. Sirbu, L. Mandache, and A. C. Smaranda, “Analysis of misalignment in a capacitively coupled contactless power transfer system,” in Proc. IEEE ISFEE, 2014, pp. 1-6.
[13] H. Z. Beh, G. A. Covic, and J. T. Boys, “Wireless fleet charging system for electric bicycles,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 75-86, Jan. 2015.
[14] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasufda, “Compact contactless power transfer system for electric vehicle,” in Proc. IEEE power electron., Jun. 2010, pp.21-24.
[15] W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform” in Proc. IEEE Industrial Electronics., 2008, pp.1063-1068.
[16] A. V. D. Bossche and P. Sergeant, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1–7, Jan. 2008.
[17] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2013年。
[18] 胡采梅,具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2015年。
[19] 莊倍源,可攜式多媒體電子產品用非接觸型感應供電墊研製,國立成功大學電機工程學系碩士論文,2009年。
[20] “元太科技” E Ink, Taiwan. [Online]. Available: https://tw.eink.com/
[21] Y. H. Sohn, B. H. Choi, E. S. Lee, G. C. Lim, G. H. Cho, and C. T. Rim, “General unified analyses of two-capacitor inductive power transfer systems: equivalenceof current-source ss and sp compensations,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6030-6045, Nov. 2015.
[22] H. Nguyen and J. I Agbinya, “Splitting frequency diversity in wireless power transmission,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6088-6096, Nov. 2015.
[23] Y. L. Lyu, F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6097-6107, Nov. 2015.
[24] C. Zheng, H. Ma, J. S. Lai, and L. Zhang, “Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6108-6119, Nov. 2015.
[25] J. Deng, W. Li, T. D. Nguyen, S. Li, and C. C. Mi, “Compact and efficient bipolar coupler for wireless power chargers: design and analysis,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6130-6140, Nov. 2015.
[26] S. Moon, B. C. Kim, S. Y. Cho, Chi. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, Nov. 2014.
[27] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. Int. Conf. Power System Technology, 2000, pp. 1053-1058.
[28] T. Duong and J. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[29] W. G. Hurley, M. C. Duffy, J. Zhang, I. Lope, B. Kunz, and W. H. Wolfle, “A unified approach to the calculation of self- and mutual-inductance for coaxial coils in air,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6155-6162, Nov. 2015.
[30] T. Yasuda, I. Norigoe, S. Abe, and Y. Kaneko, “Contactless charging system,” in Proc. IEEE INTELEC’11, 2011, pp. 1-7.
[31] S. Y. R. Hui and W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, Jul. 2005.
[32] M. Q. Nguyen, Y. Chou, D. Plesa, S. Rao, and J. C. Chiao, “Multiple-inputs and multiple-outputs wireless power combining and delivering systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6254-6263, Nov. 2015.
[33] Y. Lim and J. Park, “A novel phase-control-based energy beamforming techniques in nonradiative wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6274-6287, Nov. 2015.
[34] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391–399, Jan. 2013.
[35] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
[36] 王郁淇,非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構,國立成功大學電機工程學系碩士論文,2016年。
[37] 林哲立,植入式神經電刺激器之非接觸式射頻饋電電路研製,國立成功大學電機工程學系碩士論文,2013年。
[38] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[39] 張繼安,電動車用非接觸式三相感應充電槳系統之研製,國立成功大學電機工程學系碩士論文,2011年。
[40] 沈鳳麒,具非接觸式供電監控單元之植入型功能電刺激器,國立成功大學電機工程學系碩士論文,2013年。
[41] 張笠筠,植入式骨釘之非接觸電刺激裝置,國立成功大學電機工程學系碩士論文,2014年。
[42] PIC30F4011 Data Sheet, Microchip Technology Inc., 2004.
[43] 曾百由,dsPIC數位訊號控制器原理與實作-MPLAB C30開發實務,宏友圖書開發股份有限公司,台灣,2007年。