| 研究生: |
高綜絃 Kao, Tsung-Hsien |
|---|---|
| 論文名稱: |
低頻雜訊對奈米級高介電絕緣層/金屬閘極之P型金氧半場效電晶體的缺陷特性之研究 Investigation of Trap Properties in Nano Scale High-k/Metal Gate PMOSFETs on 1/f Noise and RTN Characteristics |
| 指導教授: |
張守進
Chang, Shoou-Jinn 方炎坤 Fang, Yean-Kuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 1/f雜訊 、隨機擾動雜訊 、金氧半場效電晶體 、高介電絕緣層/金屬閘極 、鋁離子佈植 、氟離子佈植 、二氧化鉿 |
| 外文關鍵詞: | low frequency noise (1/f noise), random telegraph noise (RTN), MOSFETs, Al I/I, F-implanted, HfO2 |
| 相關次數: | 點閱:140 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了維持邏輯互補型金氧半場效電晶體的尺寸持續微縮及提高元件性能,高介電常數介電層與金屬閘電極技術已成為製程技術最重要的基礎研究之一。近年來,很多新穎的高介電材料被提出來取代二氧化矽,其中最佳選擇之一為二氧化鉿。然而二氧化鉿本身缺陷也很多,它會使P型金氧半場效電晶體產生嚴重的缺陷捕捉效應,進而導致電性與可靠度的問題。另外在奈米級電晶體內中會有過量的低頻雜訊(包含1/f雜訊與隨機擾動雜訊)產生,因而限制類比、數位、混訊與射頻等線路功能。
本論文,為了改善上述的問題,首先研究使用離子佈植技術摻入不同的鋁能量與濃度製作P型二氧化鉿高介電金氧半場效電晶體,並探討該元件的低頻雜訊之響應。透過低頻雜訊分析,除可觀測不同的鋁能量與濃度對於元件特性影響外,並能進一步了解元件低頻雜訊的物理機制,擴展未來研究的領域。
對於具有不同的鋁能量與濃度佈植之二氧化鉿P型金氧半場效電晶體中,根據實驗結果顯示使用鋁離子佈植到二氧化鉿,可填補二氧化鉿裡的缺陷進而形成一層薄氧化鋁,使得P型金氧半場效電晶體之驅動電流與等效功函數能夠被有效提升,並且透過1/f雜訊與隨機擾動雜訊分析,發現鋁離子佈植後不僅有效的降低穿隧衰退長度以及庫倫散射,增加能障高度,減少了低頻雜訊並且改善了電晶體的品質,同時缺陷深度也比未摻入鋁的元件更靠近二氧化矽/矽介面。然而,當鋁離子佈植的能量與濃度增加時,雖然二氧化鉿缺陷還是有被填補進而形成一層薄氧化鋁,但高的鋁能量與濃度會使鋁擴散太深(靠近二氧化矽/矽介面),進而增加了等效氧化層厚度和引起閘極穿隧電流密度,使性能降低與雜訊增加。因此更多的研究必須進行探討來萃取最佳化的鋁離子佈植參數以避免高的鋁能量與濃度擴散到更深的矽基板導致可靠度和性能下降。
最後,我們同樣利用高介電係數材料二氧化鉿透過最佳參數的鋁離子佈植並結合氟來製作P型金氧半場效電晶體,並與未結合氟的P型金氧半場效電晶體來進行比較。在結合氟的P型金氧半場效電晶體中,發現驅動飽和電流高於未結合氟的金氧半場效電晶體,並且進一步透過1/f雜訊與隨機擾動雜訊的分析發現結合氟的P型金氧半場效電晶體雜訊小於未結合氟的P型金氧半場效電晶體,故知氟離子佈植更能有效的降低穿隧衰退長度以及庫倫散射,同時也增加了能障高度。並且這二種元件的缺陷位置分別在緩衝介面層中(二氧化矽),與高介電係數閘極氧化層中,這使得兩種元件的雜訊行為與產生機制不同,這樣的結果顯現出結合氟的P型金氧半場效電晶體對低頻雜訊特性與元件電性具有本質上的好處。
In past several decades, the enormous development for complementary metal-oxide-semiconductor (CMOS) technology was based on conventional silicon oxide dielectric and poly-Si gate electrode. Due to the downscaling of device dimensions in CMOS technology, high-k (HK) materials and metal gate (MG) electrodes have become an important foundation of CMOS technology processes. In this thesis, HfO2-based gate dielectrics are one of the best choices for replacing SiO2. But the intrinsic defects of HfO2 gate dielectrics have caused serious trapping effects in p-type metal–oxide–semiconductor field-effect transistors (pMOSFETs) and resulted in some reliability and electrically issues. On the other hand, excessive low-frequency noise, which includes 1/f noise and random telegraph noise (RTN) in nanoscale transistors, leads to a limitation in the functionality for analog, digital, mixed-signal, and RF circuits. In order to improve these problems, we have investigated the behaviors of low-frequency drain current noise using the different energies and doses of Al ion implantation (I/I) into HK layer of pMOSFETs devices. By utilizing the 1/f noise analysis, we can understand the response of traps properties for the different energies and doses of Al I/I pMOSFETs devices of 28-nm technique process.
For Al I/I in the pMOSFETs, this discrepancy should be attributed to the fact that the Al implantation could fill the defects and form a thin Al2O3 layer, so that the drive current and effective work function of the pMOSFETs can be effectively improved. Through the 1/f noise and RTN analysis, as a result, the tunneling barrier height φB became larger for holes and the tunneling attenuation length () penetrating into the dielectric became shorter. However, the energies and doses of Al I/I increased, the Al implantation also could fill the defects and form a thin Al2O3 layer. Higher energies and concentrations of Al have deeply diffused near SiO2/Si interface accompanied with increasing equivalent oxide thickness and caused gate tunneling current density performance degradation due to non-optimized Al implantation. Therefore more studies need to carry out to optimize the Al profiles and to minimize the induced worsening of gate leakage by the deep diffusion of Al into the Si substrate.
Finally, we have investigated of low-frequency noise of 28-nm technology process of Al I/I in HK/MG p-MOSFETs with fluorine (F) incorporation. The Drain current in devices with F incorporation is significantly higher than the without F incorporation device counterpart. The oxide trap density (Nt) with F incorporation devices are significantly lower than the without F incorporation device respectively, as a result of λ decreasing. In addition, by using the RTN, the trap depth (XT) of F incorporation devices are located closer to the IL/Si interface maybe result from for F passivating oxygen vacancies and defect sites.
[1] http://www.intel.com/technology/mooreslaw
[2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations” J. Appl. Phys. 89, pp. 5243 (2001).
[3] E. P Gusev, V. Narayanan, and M. M. Frank, “Advanced high-j dielectric stacks with polySi and metal gates: Recent progress and current challenges”, J. RES & DEV. 50, pp. 387 (2006).
[4] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices 3rd Edition, John Wiley & Sons, Inc., 2007
[5] Y. Taur T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, Cambridge, (1998).
[6] IEDM 2010 Short Course: Reliability
[7] R. Chau, S. Datta, M. Doczy, J. Kavalieros, and M. Metz, “Gate Dielectric Scaling for High-Performance CMOS: from SiO2 to High-k”, Ext. Abst. of International Workshop on Gate Insulator (IWGI)., pp. 124-126, (2003)
[8] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET’s”, IEEE Electron Device Letters, Vol. 18, no. 5, pp. 209-211, (1997).
[9] http://www.semiconwest.org/cms/groups/public/documents/web_content/ctr_024403.pdf
[10] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, (2001).
[11] B. Yu, H. Wang, C. Riccobene, Q. Xiang; M. R. Lin,” Limits of gate-oxide scaling n nano-transistors”, in VLSI Symp. Tech. Dig., pp. 90-91, (2000).
[12] L.-A. Ragnarsson, L. Pantisano, V. Kaushik, S.-I. Saito, Y. Shimamoto, S. D. Gendt, M. Heyns, “The impact of sub monolayers of HfO/sub/ on the device performance of high-k based transistors”, IEDM Tech. Dig. pp. 4.2.1 - 4.2.4, (2003).
[13] D. A. Dallmann, K. Shenai, “Scaling constraints imposed by self-heating in submicron SOI MOSFET's”, IEEE Trans. Electron Dev. Vol. 42, 3, pp. 489-496, (1995).
[14] B. Razavi, “A study of phase noise in CMOS oscillators”, IEEE J. Solid-State Circuits, Vol. 31, pp. 331-343, (1996).
[15] M. J. Deen and O. Marinov, “Noise in advanced electronic devices and circuits”, in Proc. Int. Conf. Noise and Fluctuations (ICNF), pp. 3-12, (2005).
[16] L. K. J. Vandamme, “Noise as a diagnostic tool for quality and reliability of electronic devices”, IEEE Trans. Electron Devices, Vol. 41, pp. 2176-2187, (1994).
[17] C. Claeys and E. Simoen, “Impact of advanced processing modules on the lowfrequency noise performance of deep-submicron CMOS technologies”, Microelectron. Reliab., Vol. 40, pp. 1815-1821, (2000).
[18] A. D. van Rheenen, G. Bosman, and R. J. J. Zijlstra, “Low frequency noise measurements as a tool to analyze deep-level impurities in semiconductor devices”, Solid-State Electron., Vol. 30, pp. 259-265, (1987).
[19] R. Jayaraman and C. G. Sodini, “A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon”, IEEE Trans. Electron Devices, Vol. 36, pp. 1773-1782, (1989).
[20] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/f) noise”, Advances in Physics, Vol. 38, pp. 367-468, (1989).
[21] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations?” IEEE Trans. Electron Devices, Vol. 41, pp. 1936-1945, (1994).
[22] Fleetwood, D. M., “Border traps in MOS devices,” IEEE Trans. Nucl. Sci. 39, issue 2, pp. 269-271, (1992).
[23] D. M. Fleetwood, P. S. Winokur, R. A. Reber Jr., T. L. Meisenheimer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps, and border traps on MOS devices,” J. Appl. Phys. 73, pp. 5058, (1993).
[24] Fleetwood, D. M., “Fast and slow border traps in MOS devices,” IEEE Trans. Nucl. Sci. 43, pp. 779, (1996).
[25] J. L. Liou, and F. Schwierz, “RF MOSFET: recent advances, current status and future trends”, Solid-State Electron., Vol. 47, pp. 1881-1895, (2003).
[26] A. A. Abidi, “RF CMOS comes of age”, in Proc. Symp. VLSI Circuits, pp. 113-116, (2003).
[27] R. F. Pierret, Field effect devices, Addison-Wesley, Reading, (1990).
[28] D. K. Ferry and K. Bird, Electronic materials and device, Academic Press, (2001).
[29] Y. Tsividis, Operation and modeling of the MOS transistor, Second Edition, Oxford University Press, New York, (2003).
[30] F. Schwierz, Hei Wong and J. J. Liou, Nanometer CMOS, Pan Stanford Publishing, Singapore, (2010).
[31] G. Ghibaudo, “New method for the extraction of MOSFET parameters”, Electronics Letters, Vol. 24, pp. 543-545, (1988).
[32] S. C. Sun and J.D. Plummer, “Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces”, IEEE Trans. Electron Dev., vol. ED-27, pp.1497–1508, (1980).
[33] R. V. Booth, M.H. White, H.S. Wong and T.J. Krutsick, “The Effect of Channel Implants on MOS Transistor Characterization”, IEEE Trans. Electron Dev., Vol. ED-34, pp.2501–2509, (1987).
[34] H. G. Lee, S.Y. Oh and G. Fuller, “A Simple and Accurate Method to Measure the Threshold Voltage of an Enhancement-Mode MOSFET”, IEEE Trans. Electron Dev. ED-29, pp. 346–348, Feb. (1982).
[35] Y.-C. Yeo, Q. L., W. C. Lee, T.-J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, “Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electron Device Lett., Vol. 20, no. 11, pp. 540-542, Nov. (2000).
[36] H. Hwang, W. Ting, B. Maiti, D.‐L. Kwong, and J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal oxidation of Si in N2O,” Appl. Phys. Lett., Vol. 57, no. 10, p. 1010, (1990).
[37] J. P. Chang and Y.-S. Lin, “Dielectric property and conduction mechanism of ultrathin zirconium oxide films,” Appl. Phys. Lett., Vol. 79, no. 22, p. 3666, (2001).
[38] D. Lim, R. Haight, M. Copel, and E. Cartier, “Oxygen defects and Fermi level location in metal-hafnium oxide-silicon structures,” Appl. Phys. Lett., Vol. 87, no. 7, p. 072902, (2005).
[39] L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric,” IEEE Electron Device Lett., Vol. 21, no. 4, pp. 181-183, Apr. (2000).
[40] J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle, and Yuan Chen, “Electrical Conduction and Dielectric Breakdown in Aluminum Oxide Insulators on Silicon,” IEEE Trans. Electron Devices, Vol. 47, no. 1, pp. 121-128, Jan. (2000).
[41] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Appl. Phys. Lett., Vol. 77, no. 17, p. 2710, Oct. (2000).
[42] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, C. Wiegand, “45nm High-k + Metal Gate Strain-Enhanced Transistors,” Dig. Tech. Pap. - Symp. VLSI Technol., pp. 128-129, (2008).
[43] C.-H. Jan, P. Bai, S. Biswas, M. Buehler, Z.-P. Chen, G. Curello, S. Gannavaram, W. Hafez, J. He, J. Hicks, U. Jalan, N. Lazo, J. Lin, N. Lindert, C. Litteken, M. Jones, M. Kang, K. Komeyli, A. Mezhiba, S. Naskar, S. Olson, J. Park, R. Parker, L. Pei, I. Post, N. Pradhan, C. Prasad, M. Prince, J. Rizk, G. Sacks, H. Tashiro, D. Towner, C. Tsai, Y. Wang, L. Yang, J.-Y. Yeh, J. Yip, K. Mistry, “A 45nm Low Power System-On-Chip Technology with Dual Gate (Logic and I/O) High-k/Metal Gate Strained Silicon Transistors,” Tech. Dig. - Int. Electron Devices Meet., pp. 637-640, (2008).
[44] R. H. Dennard, F. H. Gaensslen, H-N, Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,"Design of ion-implanted MOSFET’s with very small physical dimensions," IEEE J. Solid-State Circuits, Vol. SC-9, pp. 256-268, (1974).
[45] T. Schroeder, T.-L. Lee, J. Zegenhagen, C. Wenger, P. Zaumseil, and H.-J. Mussig, “Structure and Thickness-Dependent Lattice Parameters of Ultrathin Epitaxoal Pr2O¬3 Films on Si (001),” Appl. Phys. Lett., Vol. 85, pp. 1229-1231, (2004).
[46] B. H. Lee, S. C. Song, R. Choi, and P. Kirsc, “Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management,” IEEE Trans. Electron Devices, Vol. 55, pp. 8-20 (2008).
[47] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bose, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Hussner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Willuams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” IEDM, pp. 247-250 (2007).
[48] T. Suntola, and J. Antson, “Matched Partcle/Liquid Density Well Packing Technique,” U.S. Patent pp. 4850430, (1997).
[49] J. Robertson, “High Dielectric Constant Oxides”, Eur. J. Appl. Phys. Vol. 28, pp. 265-291 (2004).
[50] D. Riihela, M. Ritala, R. Matero, and M. Leskela, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films, Vol. 289, issue 1-2, pp. 250-255, (1996).
[51] E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, and M. Copel., AVS Topical Conf. on Atomic Layer Deposition, May 14, (2001).
[52] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys. Vol. 69, pp. 327–396, (2006).
[53] P. Srinivasan, E. Simoen, and D. Misra, “Low-Frequency (1/f) Noise Performance of nand p-MOSFETs with Poly-Si/Hf-Based Gate Dielectrics,” J. Electrochem. Soc., Vol. 153, No. 4, pp. G324-G329, (2006).
[54] P. Magnone, C. Pace, F. Crupi, and G. Giusi, “Low Frequency Noise in nMOSFETs with Subnanometer EOT Hafnium-Based Gate Dielectrics,” Microelectronics Reliability, Vol. 47, No. 12, pp. 2109-2113, (2007).
[55] M. Rafik, X.Garros, and C.Ouvrard, “Impact of TiN Metal Gate on NBTI Assessed by Interface States and Fast Transient Effect Characterization,” IEEE Symp. IEDM Tech. Dig., pp. 825-828, (2007).
[56] D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, R. Gregory, X.-D. Wang, M. Canonico, D. Roan, E. A. Hebert, K. Kim, J. Jiang, R. Rai, V. Kaushik, S. B. Samavedam, and N. Rochat, “Characteristics of atomic-layer-deposited thin HfZrO2 gate dielectrics,” J. Vac. Sci. Technol. B, Vol. 25, no. 3, pp. 845-852, (2007).
[57] P. J. Chen, E. Cartier, R. J. Carter, T. Kauerauf, C. Zhao, J. Petry, V. Cosnier, Z. Xu, A. Kerber, W. Tsai, E. Young, S. Kubicek, M. Caymax, W. Vandervorst, S. De Gendt, M. Heyns, M. Cope!, W. F. A. Besling, P. Bajolet, and J. Maes, “Thermal stability and scalability of Zr-aluminate-based high-κ gate stacks,” IEEE Symposium on VLSI Circuits, Digest of Technical Papers, pp. 192-193, (2002).
[58] http://www.electroiq.com/articles/sst/2010/03/integrating-high-k.html
[59] P. Ranad, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren, M. Stettler, K. Tone, S. Tyagi, and M. Bohr, “High Performance 35nm LGATE CMOS Transistors Featuring NiSi Netal Gate (FUSI), Uniaxial Strained Silicon Channels and 1.2nm Gate Oxide,” IEDM, pp. 217-220 (2005).
[60] L.-Å. Ragnarsson, Z. Li, J. Tseng, T. Schram, E. Rohr, M. J. Cho, T. Kauerauf, T. Conard, Y. Okuno, B. Parvais, P. Absil, S. Biesemans, and T. Y. Hoffmann, “Ultralow-EOT (5 Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization,” IEDM Tech. Dig., pp. 663-666, (2009).
[61] F. Arnaud, J. Liu, Y. M.Lee, K. Y.Lim, S. Kohler, J. Chen, B. K. Moon, C. W. Lai, M. Lipinski, L. Sang, F. Guarin, C. Hobbs, P. Ferreira, K. Ohuchi, J. Li, H. Zhuang, P. Mora, Q. Zhang, D. R. Nair, D. H. Lee, K. K. Chan, S. Satadru, S. Yang, J. Koshy, W. Hayter, M. Zaleski, D. V. Coolbaugh, H. W. Kim, Y. C. Ee, J. Sudijono, A. Thean, M. Sherony, S. Samavedam, M. Khare, C. Goldberg, and A. Steegen, “32nm General Purpose Bulk CMOS Technology for High Performance Applications at Low Voltage,” IEDM Tech. Dig., pp. 633-636, (2008).
[62] T. Tomimatsu, Y. Goto, H. Kato, M. Amma, M. Igarashi, Y. Kusakabe, M. Takeuchi, S. Ohbayashi, S. Sakashita, T. Kawahara, M. Mizutani, M. Inoue, M. Sawada, Y. Kawasaki, Yamanari, Y. Miyagawa, Y. Takeshima, Y. Yamamoto, S. Endo, T. Hayashi, Y. Nishida, K. Horita, T. Yamashita, H. Oda, K. Tsukamoto, Y. Inoue, H. Fujimoto, Y. Sato, K. Yamashita, R. Mitsuhashi, S. Matsuyama, Y. Moriyama, K. Nakanishi, T. Noda, Y. Sahara, N. Koike, J. Hirase, T. Yamada, H. Ogawa, and M. Ogura, “Cost-effective 28nm LSTP CMOS Using Gate-First Metal Gate/High-k Technology,” VLSI Tech. Dig., pp. 36-37, (2009).
[63] H. R. Harris, P. Kalra, P. Majhi, M. Hussain, D. Kelly, J. Oh, D. He, C. Smith, J. Barnett, P. D. Kirsch, G. Gebara, J. Jur, D. Lichtenwalner, A. Lubow, T. P. Ma, G. Sung, S. Thompson, B. H. Lee, H.-H. Tseng, and R. Jammy, “Band-engineered Low PMOS VT with High-k/Metal Gates Featured in a Dual Channel CMOS Integration Scheme,” VLSI Tech. Dig., pp. 154-155, (2007).
[64] K. Choi, H. Jagannathan, C. Choi, L. Edge, T. Ando, M. Frank, P. Jamison, M. Wang, E. Cartier, S. Zafar, J. Bruley, A. Kerber, B. Linder, A. Callegari, Q. Yang, S. Brown, J. Stathis, J. Iacoponi, V. Paruchuri, and V. Narayanan, “Extremely Scaled Gate-First High-k/Metal Gate Stack with EOT of 0.55nm Using Novel Interfacial Layer Scavenging Techniques for 22nm Technology Node and Beyond,” VLSI Tech. Dig., pp. 138-139, (2009).
[65] Fleetwood, D.M., “Border traps in MOS devices,” IEEE Trans. Nucl. Sci. 39, issue 2, pp. 269-271, (1992).
[66] Fleetwood, D.M., “Fast and slow border traps in MOS devices,” IEEE Trans. Nucl. Sci.43, pp. 779, (1996).
[67] Dieter K. Schroder, Electrical Characterization of Defects in Gate Dielectrics, Chapter 5 of Defects in Microelectronic Materials and Devices, Boca Raton London New York: Taylor & Francis Group, (2008).
[68] Christensson, S., Lundstrom, I., and Svensson, C., “Low-frequency noise in MOS transistors: I-theory,” Solid State Electron. 11, issue 9, pp. 797-812, (1968).
[69] Tewksbury, T.L. and Lee, H.S., “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFET’s,” IEEE J. Solid State Circ. 29, issue 3, 45 pp. 239-252, (1994)
[70] Burstein, E. and Lundquist, S., Tunneling Phenomena in Solids, Plenum Press, New York, (1969).
[71] M. von Haartman, M. Östling, “Low-Frequency Noise in Advanced MOS Devices”, Springer, (2007).
[72] R. Landauer, “The noise is the signal”, Nature, Vol. 392, pp. 658-659, (1998).
[73] F. N. Hooge, “1/f Noise Sources”, IEEE Trans. Electron Devices, Vol. 41, pp.1926-1935, (1994).
[74] T. Musha, S. Sata and M. Yamamoto, “Noise in Physical Systems and 1/f Fluctuation”, IOS Press, Japan, (1992).
[75] A. van der Ziel. “Noise in Solid State Devices and Circuits.” John Wiley & Sons, New York, (1986).
[76] N. Giordano, “Defect motion and low-frequency noise in disordered metals”, Solid State Sci., Vol. 3, no. 1, pp. 27, (1989).
[77] J. B. Johnson, “Thermal agitation of electricity in conductors”, Phys. Rev., Vol. 32, pp. 97-109, (1928).
[78] H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev., Vol. 32, pp. 110-113, (1928).
[79] A. van der Ziel, J. B. Anderson, A. N. Birbas, W. C. Chen, P. Fang, V. M. Hietala, C. S. Parka, P. R. Pukite, M. F. T., X. Wua, J. Xu and A. C. Young, “Shot noise in solid state diodes”, Solid-State Electron, Vol. 29, pp. 1069, (1986).
[80] K.K Hung, P.K. Ko, C.M. Hu,”A unified model for the flicker noise in metal-oxide -semiconductor field-effect transistors”, IEEE Trans. Electron Devices, p654, (1990).
[81] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise”, Rev. Mod. Phys., 53, pp. 497-516, (1981).
[82] F. N. Hooge, “1/f noise is no surface effect”, Phys. Lett. A, Vol. 29a, pp. 139-140, (1969).
[83] F. N. Hooge, “Discussion of recent experiments on 1/f noise”, Physica, Vol. 60, pp.130-144, (1972).
[84] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise”, Rep. Prog. Phys., Vol. 44, pp. 479-531, (1981).
[85] S. Machlup, “Noise in semiconductors: spectrum of a two-parameter random signal”, J. Appl. Phys., Vol. 25, pp. 341-343, (1954).
[86] Y. A. Allogo, M. Marin, M. de Murcia, P. Llinares, D. Cottin, “1/f noise in 0.18 m technology n-MOSFETs from subthreshold to saturation”, Solid-State Electronics, Vol. 46, pp. 977-983, (2002).
[87] A. L. McWorther, Semiconductor surface physics, University of Pennsylvania Press, Philadelphia, (1957)
[88] E. Simoen, and C. Claeys, “On the flicker noise in submicron silicon MOSFETs,” Solid-State Electron. Vol. 43, issue 5, pp. 865-882 (1999).
[89] G. Ghibaudo and T. Boutchacha, “Electrical noise and RTS fluctuations in advanced CMOS devices,” Microelectron. Reliab. Vol. 42, issues 4-5, pp. 573-582 (2002).
[90] J. Chang, A. A. Abidi, and C. R. Viswanathan, “Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures,” IEEE Trans. Electron Devices 41, issue 11, pp. 1965-1971 (1994).
[91] M. von Haartman, A.-C. Lindgren, P.-E. Hellstrom, B. G. Malm, S.-L. Zhang, and M. Ostling, “1/f noise in Si and Si0.7Ge0.3 pMOSFETs,” IEEE Trans. Electron Devices 50, issue 12, pp. 2513-2519 (2003).
[92] M. von Haartman, B. G. Malm, and M. Ostling, “Comprehensive study on low-frequency noise and mobility in Si and SiGe pMOSFETs with high-k gate dielectrics and TiN gate,” IEEE Trans. Electron Devices 53, issue 4, pp. 836-843, (2006).
[93] G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, J. Brini, “Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors”, Phys. Stat. Sol. (A), Vol. 124, pp. 571-581, (1991).
[94] M.J. Kriton, M.J. Uren “Noise in solid-state microstructure: microstructure: A new perspective on individual defects interface states and low frequency noise”, Advances Physics, Vol.38, No.4, pp.367-468, (1989).
[95] M. O. Andersson, Z. Xiao, S. Norrman, O. Engström, “Model based on trap-assisted tunneling for two-level current fluctuations in submicrometer metal–silicon-dioxide–silicon diodes”, Phys. Rev. B, Vol.41, pp. 9836, (1990).
[96] A. Avella, D. Schroeder, and W. Krautschneider, “Modeling random telegraph signals in the gate current of metal–oxide–semiconductor fieldeffect transistors after oxide breakdown”, Applied Physics, Vol.94, No.1, pp.703-708, (2003).
[97] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworthand D. M. Tennant, “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f?) Noise”, Phys Rev. Lett., Vol. 52, pp. 228-231, (1984).
[98] K. R. Farmer, C. T. Rogers, and R. A. Buhrman, “Localized-State Interactions in Metal-Oxide-Semiconductor Tunnel Diodes”, Phys. Rev. Lett., Vol. 58, pp. 2255-2258, (1987).
[99] M. Schulz, “Coulomb energy of traps in semiconductor space-charge regions”, J. Appl. Phys., Vol. 74, pp. 2649-2657, (1993).
[100] H. H. Mueller, D. Wörle, and M. Schulz, “Evaluation of the Coulomb energy for single-electron interface trapping in sub-μm metal-oxide-semiconductor field-effect transistors”, J. Appl. Phys., Vol. 75, pp. 2970-2979, (1994).
[101] M. J. Chen and M. P. Lu, “On–off switching of edge direct tunneling currents in metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., Vol. 81, pp. 3488-3490, (2002).
[102] S. Lee, Heung-Jae Cho, Younghwan Son, Dong Seup Lee, and Hyungcheol Shin, “Characterization of Oxide Traps Leading to RTN in High-k and Metal Gate MOSFETs,” IEDM Tech. Dig., pp. 763-766 , (2009).
[103] Y. W. Chen, C. M. Lai, T. F. Chiang, L. W. Cheng, C. H. Yu, C. H. Chou, C. H. Hsu, W. Y. Chang , T. B. Wu, and C. T. Lin, “Effective Work Function Modulation by Aluminum Ion Implantation on Hf-Based High-k/Metal Gate pMOSFET” IEEE Electron Dev. Lett., Vol. 31, pp. 1290 (2010).
[104] S. Kamiyama, D. Ishikawa, E. Kurosawa, H. Nakata, M. Kitajima, M. Ootuka, T. Aoyama, Y. Nara, and Y. Ohji, IEEE Int. Electron Dev. Meeting (IEDM) Tech. Dig. pp. 41 (2008).
[105] H. S. Jung, J. H. Lee, S. K. Han, Y. S. Kim, H. J. Lim, M. J. Kim, S. J. Doh, M. Y. Yu, N. I. Lee, H. L. Lee, T. S. Jeon, H. J. Cho, S. B. Kang, S. Y. Kim, I. S. Park, D. Kim, H. S. Baik, and Y. S. Chung, “A Highly Manufacturable MIPS (Metal Inserted Poly-Si Stack) Technology with Novel Threshold Voltage Control” VLSI Symp Technical Digest pp. 232 (2005).
[106] R. Singanamalla, H. Y. Yu, B. van Daele, S. Kubicek, and K. De Meyer, IEEE Electron Dev. Lett. 28, pp. 1089 (2007).
[107] Y. Tsuchiya, M. Yoshiki, J. Koga, A. Nishiyama, M. Koyama, M. Ogawa, and S. Zaima, ”Effective Work Function Control With Aluminum Postdoping in the Ni Silicide/HfSiON Systems” IEEE Trans. Electron Dev. Vol. 55, pp. 2648 (2008).
[108] C. Leyris, F. Martinez, A. Hoffmann, M. Valenza, and J. C. Vildeuil, “N-MOSFET oxide trap characterization induced by nitridation process using RTS noise analysis” Microelectron. Reliab. Vol. 47, pp. 41 (2007).
[109] J. J. Kuo, W. P. Chen, and P. Su, “Impact of Uniaxial Strain on Low Frequency Noise in Nanoscale PMOSFETs” IEEE Electron Device Lett, Vol. 30, pp. 672, (2009).
[110] L. K. J. Vandamme and F. N. Hooge, “What do we certainly know about 1/f noise inMOSTs?” IEEE Trans. Electron Devices, Vol. 55, no. 11, pp. 3070–3085, (2008).
[111] C. W. Kuo, S. L. Wu, S. J. Chang, Y. T. Huang, Y. C. Cheng, and O. Cheng, “Impact of stress-memorization technique induced-tensile strain on low frequency noise in n-channel metal-oxide-semiconductor transistors,” Appl. Phys. Lett., Vol. 97, pp. 123501, (2010).
[112] Y. T. Huang, S. L. Wu, S. J. Chang, , C. W. Kuo, Y. T. Chen, Y. C. Cheng, and O. Cheng,” Dependence of DC Parameters on Layout and Low-Frequency Noise Behavior in Strained-Si nMOSFETs Fabricated by Stress-Memorization Technique.”, IEEE Electron Device Lett., Vol. 31, NO. 5, (2010).
[113] K. K. Hung, P.K. KO, C. Hu, and Y.C. Cheng, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Electron Device Lett., Vol. 11, pp. 90-92, (1990).
[114] T. Nagumo, K. Takeuchi, T. Hase, and Y. Hayashi, “Statistical Characterization of Trap Position, Energy, Amplitude and Time Constants by RTN Measurement of Multiple Individual Traps,” IEEE Int. Electron Dev. Meeting (IEDM) Tech. Dig., pp. 628, (2010).
[115] K. Kandiah, M. O. Deighton, and F. B. Whiting, “A physical model for random elegraph signal currents in semiconductor devices,” J. Appl. Phys. Vol. 66, pp. 937 (1989).
[116] N. V, Amarasingh, Z.Celik-Butler, A. Zlotnicka, and F. Wang, “Model for random telegraph signals in sub-micron MOSFETS,” Solid-State Electron. Vol. 47, pp. 1443-1449 (2003).
[117] B. C. Wang, S. L. Wu, C. W. Huang, Y. Y. Lu, S. J. Chang, Y. M. Lin, K. H. Lee, and O. Cheng, “Characterization of Oxide Tarps in 28 nm p-Type Metal–Oxide– Semiconductor Field-Effect Transistors with Tip-Shaped SiGe Source/Drain Based on Random Telegraph Noise,” J. Appl. Phys. Vol. 51, pp. 02BC11 (2012).
[118] W. C. Wu, C. S. Lai, T. M. Wang, J. C. Wang, C. W. Hsu, M. W. Ma, W. C. Lo, and T. S. Chao, ”Carrier Transportation Mechanism of the TaN/HfO2/IL/Si Structure With Silicon Surface Fluorine Implantation” IEEE Transactions on Electron Devices, Vol. 55, pp. 1639 (2008).
[119] S. C. Tsai, S. L. Wu, B. C. Wang, S. J. Chang, C. H. Hsu, C. W. Yang, C. M. Lai, C. W. Hsu, O. Cheng, P. C. Huang, and J. F. Chen, “Low-Frequency Noise Characteristics for Various ZrO2-Added HfO2-Based 28-nm High-k/Metal-Gate nMOSFETs” IEEE Electron Device Letters, Vol. 34, no. 7, pp. 834-836, JULY (2013).
[120] K. Choi, H. C. Wen, G. Bersuker, R. Harris, and B. H. Lee, “Mechanism of flatband voltage roll-off studied with Al2O3 film deposited on terraced oxide,” Appl. Phys. Lett., Vol. 93, no. 12, pp 133506, (2008).
[121] E. P. Vandamme and Lode K. J. Vandamme, “Critical Discussion on Unified 1/f Noise Models for MOSFETs,” IEEE Trans. Electron Devices, Vol. 47, issue 11, pp. 2146-2152, (2000).
[122] S. P. Devireddy, Bigang Min, Zeynep Çelik-Butler, Hsing-Huang Tseng, Philip J. Tobin, and Ania Zlotnicka, “Improved low frequency noise characteristics of sub-micron MOSFETs with TaSiN/TiN gate on ALD HfO2 dielectric,” Microelectron Reliab., Vol. 47, issue 8, pp. 1228-1232, (2007).
[123] M. Trabelsi, L. Militaru, N. Sghaier, A. Savio, S. Monfray, and A. Souifi, “Study of gate oxide/channel interface properties of SON MOSFETs by random telegraph signal and low frequency noise” IEEE Trans. Nanotechnol. Vol. 10, pp. 402 (2011).
[124] S. Ferraton, L. Militaru, A. Souifi, S. Monfray, and T. Skotnicki, “Study of SiO2/Si interface properties of SON MOSFETs by random telegraphsignal and charge pumping measurements,” Solid-State Electron., Vol. 52, no. 1, pp. 44-48, (2008).
[125] Y. T. Hou, M. F. Li, Y. Jin, and W. H. Lai, “Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices”, J. Appl. Phys., Vol. 91, pp. 258-264, (2002).
[126] S. E. Thompson, P. Packan, and M. Bohr, “MOS scaling: transistor challenges for the 21st century”, Intel Tech. Journal, pp. 1-19, (1998).
[127] X. Yang, J. Lim, G. Sun, K. Wu, T. Nishida, and S. E. Thompson, “Strain-induced changes in the gate tunneling currents in p-channel metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., Vol. 88, pp. 052108-1-3, (2006).
[128] K. Alam, S. Zaman, M. M. Chowdhury, M. R. Khan, and A. Haque, “Effects of inelastic scattering on direct tunneling gate leakage current in deep submicron metal-oxide-semiconductor transistors”, J. Appl. Phys., Vol. 92, pp. 937-943 (2002).
[129] X. Yang, Y. Choi, T. Nishida, and S. E. Thompson, “Gate direct tunneling currents in uniaxial stressed MOSFETs”, in Proc. Of EDST, pp. 149-152, (2007).
[130] M. Inoue, S. Tsujikawa, M. Mizutani, K. Nomura, T. Hayashi, K. Shiga, J. Yugami, J. Tsuchimoto, Y. Ohno, and M. Yoneda, “Fluorine incorporation into HfSiON dielectric for Vth control and its impact on reliability for poly-Si gate pFET” IEEE Int. Electron Dev. Meeting (IEDM) Tech. Dig., 413, (2005).
[131] J. W. Lee, E. Simoen, A. Veloso, M. J. Cho, H. Arimura, G. Boccardi, L.-Å. Ragnarsson, T. Chiarella, N. Horiguchi, A. Thean, and G. Groeseneken, “Low frequency noise analysis for post-treatment of replacement metal gate” IEEE Trans. Electron Devices, 60, 2960, (2013).
[132] E. Simoen, J. W. Lee, A. Veloso, V. Paraschiv, N. Horiguchi, and C. Claeys, “Low-Frequency-Noise-Based Oxide Trap Profiling in Replacement High-κ/Metal-Gate pMOSFETs” ECS Journal of Solid State Science and Technology, Vol. 3, pp. Q127, (2014).
[133] A. Veloso, G. Boccardi, L.-Å. Ragnarsson, Y. Higuchi, H. Arimura, J. W. Lee, E. Simoen, M. J. Cho, Ph. J. Roussel, V. Paraschiv, X. Shi, T. Schram, S. A. Chew, S. Brus, A. Dangol, E. Vecchio, F. Sebaai, K. Kellens, N. Heylen, K. Devriendt, H. Dekkers, A. Van Ammel, T. Witters, T. Conard, I. Vaesen, O. Richard, H. Bender, R. Athimulam, T. Chiarella, A. Thean, and N. Horiguchi, ”Highly scalable effective work function engineering approach for multi-VT modulation of planar and FinFET-based RMG high-k last devices for (Sub-) 22nm nodes” Jpn. J. Appl. Phys. Vol. 53, pp. 04EA04, (2014).
[134] J. W. Lee, W. S. Yan and G. Ghibaudo, “Impact of trap localization on low-frequency noise in nanoscale device” J. Appl. Phys., Vol. 115, pp. 194501 (2014).
[135] E. Cartier, F. R. McFeely, V. Narayanan, P. Jamison*, B. P. Linder, M. Copel, V. K. Paruchuri, V. S. Basker, R. Haight, D. Lim, R. Carruthers, T. Shaw, M. Steen, J. Sleight, J. Rubino, H. Deligianni, S. Guha, R. Jammy, G. Shahidi, “Role of oxygen vacancies in VFB/Vt stability of pFET metals on HfO2”, VLSI Symp Technical Digest, pp. 230-232, June. (2005).
[136] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, and S. Datta., “Advanced Depleted-Substrate Transistors: Single-Gate, Double-Gate, and Tri-Gate,” International Conference on Solid-State Devices and Materials (SSDM), Nagoya, Japan, pp. 68-69, (2002).
[137] J.-J. Lee, S. T. Hsu, D. J. Tweet, and J.-S. Maa, “Strained silicon finFET device,” U.S. Patent, pp. 7045401, May (2006).
[138] M. Radosavljevic, G. Dewey, J. M. Fastenau, J. Kavalieros, R. Kotlyar, B. Chu-Kung, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and R. Chau, “Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications,” Tech. Dig. - Int. Electron Devices Meet, pp. 126-129, (2010).
[139] C.-Y. Chang, T.-L. Lee, C. Wann, L.-S. Lai, H.-M. Chen, C.-C. Yeh, C.-S. Chang, C.-C. Ho, J.-C. Sheu, T.-M. Kwok, F. Yuan, S.-M. Yu, C.-F. Hu, J.-J. Shen, Y.-H. Liu, C.-P. Chen, S.-C. Chen, L.-S. Chen, L. Chen, Y.-H. Chiu, C.-Y. Fu, M.-J. Huang, Y.-L. Huang, S.-T. Hung, J.-J. Liaw, H.-C. Lin, H.-H. Lin, L.-T. S. Lin, S.-S. Lin, Y.-J. Mii, E. Ou-Yang, M.-F. Shieh, C.-C. Su, S.-P. Tai, H.-J. Tao, M.-H. Tsai, K.-T. Tseng, K.-W. Wang, S.-B. Wang, J. J. Xu, F.-K. Yang, S.-T. Yang, C.-N. Yeh, “A 25-nm Gate-Length FinFET Transistor Module for 32nm Node,” Tech. Dig. - Int. Electron Devices Meet, pp. 293-296, (2009).
[140] R. T.-P. Lee, K.-M. Tan, A. E.-J. Lim, T.-Y. Liow, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “P-Channel Tri-Gate FinFETs Featuring Ni1−yPtySiGe Source/Drain Contacts for Enhanced Drive Current Performance,” IEEE Electron Device Lett., Vol. 29, no. 5, pp. 438-441, May (2008).
[141] E. Simoen, J. Mitard, G. Hellings, G. Eneman, B. De Jaeger, L. Witters, B. Vincent, R. Loo, A. Delabie, S. Sioncke, M. Caymax, and C. Claeys, “Challenges and opportunities in advanced Ge pMOSFETs,” Mater. Sci. Semicond. Process, Vol. 15, no. 6, pp. 588–600, Dec. (2012).
[142] M. Hong, J. R. Kwo, P. Tsai, Y. Chang, M.-L. Huang, C. Chen, and T. Lin, “III-V metal-oxide-semiconductor field-effect transistors with high κ dielectrics,” Jpn. J. Appl. Phys., Vol. 46, no. 5B, pp. 3167–3180, May (2007).
校內:2026-12-31公開