| 研究生: |
林昆燁 Lin, Kun-Yeh |
|---|---|
| 論文名稱: |
LED 燈具之矩形鰭片上的熱傳特性預測 Estimation of Heat Transfer Characteristics from Rectangular Fins in LED Lamp |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | LED 、逆算法 、矩形鰭片 、熱傳量 、熱傳係數 |
| 外文關鍵詞: | LDE, Inverse method, rectangular fin, heat transfer coefficient |
| 相關次數: | 點閱:132 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發光二極體(LED)為近代節能計畫光源的代表,具有省電與壽命長等優點,但事實上LED 卻是一種高熱的發光元件,無法有效的將LED所產之熱能散出,將導致發光效率嚴重下降,因此LED之散熱已成為其使用效率之重要條件。LED燈具最根本散熱系統為鰭片散熱,鰭片結構不僅易製作、穩定且經濟。本文乃以有限差分法(Finite difference method)並配合最小平方法(Least-squares scheme)及溫度量測值來研究LED燈具上鰭片之平均熱傳係數(Average heat transfer coefficient)、總熱傳量(Total heat transfer rate)和鰭片效率(Fin efficiency)。鰭片上的熱傳係數是不均勻的,為了利用鰭片上的溫度量測值來預測鰭片上之熱傳係數,因此將鰭片分割成數個小區域,並假設每個區域上的熱傳係數為常數。結果顯示,於自然對流(Free convection)之條件下,平均熱傳係數會隨著鰭片間距增加而提高,卻隨鰭片高度增加而減小。而在強制對流(Forced convection) 與相同風速之條件下,平均熱傳係數會隨著鰭片間距增加而減小並趨近於單一鰭片之值。本文所估算之平均熱傳係數與相關文獻之經驗公式相比較,已驗證本文逆算法之準確性及經驗公式之合理性。
LED, the illuminating light source in energy saving, can save more power and have longer life cycle comparing to traditional light source. In fact, LED is a lighting component with high heat. That high heat of LED can’t be transferred effectively will seriously result in lower illuminating efficiency. Thus, heat transfer function of LED has played an important role in its working efficiency. A fin is a basic heat transfer system of the LED lamp, which is not only easy to produce, but also stable and economical.
The present study applies the finite-difference method in conjunction with the least-squares scheme and measured temperatures to estimate the average convection heat transfer coefficient, total heat transfer rate, and fin efficiency on a vertical rectangular fin. The heat transfer coefficient on this rectangular fin is non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average heat transfer coefficient. The heat transfer coefficient on those sub-fin regions is assumed to be constant. The results show that the average heat transfer coefficient increases with increasing the fin spacing and decreases with increasing the fin height in free convection. The average heat transfer coefficient decreases with increasing the fin spacing for a fixed air speed in forced convection.. However, this value approaches its corresponding asymptotical value obtained from a single fin as S → ∞ . In order to evidence the accuracy of the present inverse scheme and the reliability of some experimental formulas, a comparison of the average heat transfer coefficient between the present predicated results and those obtained from correlation recommended by current textbook is made.
[1] M. Arik, J. Petroski, S. T. Weaver, “Challenges in the future generation solid state lighting applications: light emitting diodes, ” ASME/IEEE International Packaging Technical Conference, New York, pp. 113-120, 2002.
[2] 李豫華,發光二極體的散熱技術,科學發展,vol. 435, pp. 18-21, 2009.
[3] I. Niki, Y. Narukawa, D. Morita, S. sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamata, and T. Mukai, “White LEDs for solid state lighting, ” Proc. SPIE, vol. 5187, pp. 1-9, 2004.
[4] G. Murtaza and J. M. Senior, “Method for extracting thermally stable optical singles from a CaAlAs LED source, ” IEEE Photonics techno. Vol. 7, pp. 479-481, 1995.
[5] Y. Gu, N. Narendran, and J. P. Freyssinier, “White LED performance, ” proc. SPIE, Vol. 5530, pp. 119-124, 2004.
[6] S. C. Bera, R. V. Singh, V. K. Garg, “Temperature behavior and compensation of light-emitting diode, ” IEEE Photonics technol. Lett, pp. 2286-2288, 2005.
[7] L. V. Panina, K. Mohri, K. Bushida, “Giant magneto-impedance and magneto-inductive effects in amorphous alloys, ” J Appl Phys, Vol. 76, pp. 6198-6203, 1994.
[8] P. Delooze, L. V. Panina, D. J. Mapps, “Resolution differential magnetic field sensor utilizing asymmetrical magneto impedance in multiyear films, ” IEEE Trans Magn, vol, 40, pp. 2664-2666, 2004.
[9] T. E. Schmidt, “Heat transfer calculations for extended surfaces, ” Refri. Eng. , pp. 351-357, 1949.
[10] J. R. Bodoia, J. F. Osterle, “The development of free convection between heated vertical plates, ” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962.
[11] J. H. Sununu, “The effect of spacing on the efficiency of extended surfaces for natural convection cooling, ” Proceedings of the National Elect. Packaging and Production Conf., pp. 30-40, 1963.
[12] L. F. Smith, “An interferometer investigation of optimum rectangular fin geometry for maximum free-convection heat transfer from a finned horizontal surface, ” MS thesis, The Ohio State University, 1963.
[13] C. D. Jones, L. F. Smith, “Optimum arrangement of rectangular fins on horizontal surface for free-convection heat transfer, ” ASME J. Heat Transfer, pp. 6-10, 1970.
[14] S.Naik, S. D. Probert, I. G. Bryden, “Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection, ” Int. J. Heat Fluid Flow, Vol. 20, pp. 374-384, 1999.
[15] E. M. Sparrow, A. Haji-Sheikh and T. S. Lundgern, “ The inverse problem in transient heat conduction, ” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.
[16] N. M. Alnajem, M. N. Özisik, “A direct analytical approach for solving linear inverse heat conduction problems, ” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
[17] J. V. Beck, “Calculation of surface heat flux from an integral temperature history, ” ASME J. Heat Transfer, Vol. 62, pp.46-51, 1962.
[18] J. V. Beck, “Surface heat flux determination using an integral method, ” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
[19] J. V. Beck, B. Litkouhi, C. R. Stclair, “Efficient numerical-solution of nonlinear inverse heat-conduction problem, ” Mech., Vol. 102, pp.96-96, 1980.
[20] O. M. Alifanov, “Solution of an inverse problem of heat conduction by iteration method, ” J. Eng. Phys., Vol. 26, pp. 471-476, 1974.
[21] E. P. Scott, and J. V. Beck, “Analysis of order of the sequential regulation solutions of heat conduction problem, ” ASME J. Heat Transfer, Vol. 111, pp.218-224, 1989.
[22] J. V. Beck, and D. A. Murio, “Combined function specification regularization procedure for solution of inverse heat conduction problem, ” AIAA J., Vol. 24, pp. 180-185, 1986.
[23] J. Deans, J. Neal, “The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, ” Heat Transfer Eng., Vol. 27, pp. 56-67, 2006.
[24] S. Lee, “Optimun design and selection of heat sink, ” Proceedings of IEEE Semi-Term Symposium, pp. 48-54, 1995.
[25] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究,國立台灣科技大學機械工程研究所,碩士論文,2002
[26] 張文奎,散熱鰭片擴散熱阻之分析,國立清華大學工程與系統科學研究所,碩士論文,2002.
[27] H. T. Chen, J. P. Song, Y. T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, ” Int. J. Heat Mass Transfer, Vol. 48, pp. 2697-2707, 1993.
[28] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient from the vertical fin of finned-tube heat exchangers, ” Int. J. Heat Mass Transfer, Vol. 49, pp. 3034-3044, 1993.
[29] 劉立熙,根據實驗溫度量測值估算矩形鰭片上之熱傳特性,國立成功大學機械工程研究所,碩士論文,2007.
[30] 徐國軒,以逆算法估算自然對流下垂直矩形鰭片上的熱傳特性,國立成功大學機械工程研究所,碩士論文,2008.
[31] A. Bar-Cohen, W. M. Rohsenow, “Thermally optimum spacing of vertical, natural convection cooled, parallel plates, ” ASME J. Heat Transfer, Vol. 106, pp. 116-123, 1984.
[32] K. Raznjevic, “Handbook of Thermodynamic Tables and Charts, ” McGraw-Hill, New York, 1976.
[33] F. Harahap and H. Lesmana, “Measurements of heat dissipation from miniaturize vertical rectangular fin arrays under dominant natural convection conditions, ” Heat Mass Transfer, Vol. 42, pp. 1025-1036, 2006.
[34] C. W. Leung and S. D. Probert, “Heat exchanger performance: Effect of orientation, ” Applied energy, Vol. 33, pp. 235-252, 1989.
[35] C. W. Leung and S. D. Probert, “Thermal effectiveness of short-protrusion rectangular heat exchanger fins, ” Applied energy, Vol. 34, pp. 1-8, 1989.
[36] T. Igarashi and Y. Mayumi, “Fluid flow and heat transfer around a rectangular cylinder with small inclined angle (the case of a width/height ratio of a section of 5), ” Int. J. Heat Fluid Flow, vol. 22, pp. 279-286, 2001.
[37] 施順榮,整合基因演算法與熱流分析軟體進行散熱模組最佳化,國立成功大學航空太空工程研究所,碩士論文,2008.
[38] 鄭憶湘,散熱片在強制對流下之最佳化設計與實驗,國立清華大學工程與系統科學研究所,碩士論文,2002.
[39] F. P. Incropera, D. P. Dewitt, “Introduction to heat transfer, ” ed., John Wiley & Sons, pp. 8 and 457, 1996.