簡易檢索 / 詳目顯示

研究生: 鄭立杰
Cheng, Li-Chieh
論文名稱: 豬結腸組織及明膠之機械特性實驗研究
Investigation on Mechanical Properties of Porcine Colon and Gelatin
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 豬結腸組織明膠深壓穿透試驗壓縮試驗撕裂強度試驗
外文關鍵詞: colon, gelatin, punch, deep penetration test, compression test
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗的方法探討生物組織及明膠等軟性固體材料之機械特性,運用於發展內視鏡之無針式注射技術。利用深壓穿透試驗、壓縮試驗與撕裂強度試驗等方法決定軟性固體材料之機械特性。研究中將深壓穿透試驗分為塊狀軟性固體材料深壓穿透試驗與薄片狀軟性固體材料深壓穿透試驗,以平頭型、圓頭型與尖頭型等衝頭,在衝頭沉降速度為3~120 mm/min下,針對明膠(30%)與豬結腸組織進行強度之量測。豬結腸深壓穿透實驗結果顯示,其應力應變曲線包括五個階段,第一階段,應力隨應變呈線性的微幅成長;第二階段,應力隨應變呈指數成長;第三階段為應力與應變呈線性關係至應力值瞬間降低又隨即上升的部分破裂點,而進入下個階段;第四階段應力與應變呈線性關係;第五階段之非線性段至最後的破裂點,由深壓穿透試驗之應力-應變圖可觀察出受測組織的多層結構。其破裂強度量測值主要受衝頭形狀和衝頭沉降速度之影響,與厚度和測試位置關係較小。平頭型衝頭所量測之破裂強度值較大、尖頭型衝頭量測值較小且量測變異量亦最小。實驗結果亦顯示平頭型與圓頭型等衝頭之沉降速度增加時,所量測之破裂強度值亦隨之遞增,但尖頭型衝頭之沉降速度對破裂強度量測影響較小。由於無針式注射技術屬於微型注射,與尖頭型衝頭類似,故尖頭型衝頭量測值可作為無針式注射技術運用之依據。經由計算發現,各衝頭形狀與沉降速度條件下於應變量0.125~0.15區間內,線性擬合結果最佳,此線性區間內之平均楊氏係數分別為1.5526±0.2119 MPa(平頭型衝頭)、0.7618±0.2990 MPa(圓頭衝頭)與0.7609±0.1976 MPa(尖頭衝頭)。明膠(30%)的塊狀深壓穿透試驗顯示其應力-深度曲線圖與文獻中矽膠塊狀深壓穿透試驗典型曲線相似,其表面破裂強度值亦隨所採用衝頭形狀而異,平頭型衝頭所測強度值最高,尖頭型衝頭所測強度值最低,並隨衝頭沉降速度增加而遞增。豬結腸組織壓縮試驗和撕裂強度試驗之結果顯示,應變區間0.125~0.15之間,平均楊氏係數為0.089±0.0036 MPa和在撕裂速度為50 及100 mm/min下,其撕裂強度分別為1.072±0.087 N/mm 及0.796±0.129 N/mm。
    由於衝頭形狀會影響量測結果,其差異可達45%以上,故使用實驗數據時必須考慮應用案例之破裂模式,與衝頭形狀所造成之破裂模式一致。

    In this study, the aid is chose experimental methods to probe for soft tissue and gelatin mechanical properties, it would be beneficial to development of endoscopic needle-free injection technology. Using deep penetration test, compression test and tear test methods such as the decision of the mechanical properties of soft solid materials. Deep penetration test are classified according to samples shape; block and thin sheets of soft solid materials, and chose three types punches: sharp-tipped, flat-bottomed cylindrical and spherical-tipped punches, the punch velocity was 3 ~ 120 mm / min, the target of gelatin (30%) and pig colonic tissues were measured mechanical intensity. Pig colon deep penetration test results showed that the stress strain curve consists of five stages: the first stage is fairly linear relationship of strain- stress curve; the second stage, stress increases exponentially with strain; the third stage, stress- strain relationship become linear until the partial rupture occur; the fourth stage, following the partial rupture point, linear relationship between stress and strain; the fifth stage, nonlinear part of the curve until the rupture. In the deep penetration test, stress - strain diagram can be observed the tissue of multi-layer structure. The failure strength measured value is mainly affected by the shape and settling velocity of the punch, The measured breakdown strength values of flat-bottomed punch is the largest, sharp-tipped punch measured value is the smallest and the measurement variance is the minimum. The results also show that when flat-bottomed and spherical-tipped punch-type of the settling velocity increases, the measured failure strength decreases, but the sharp-tipped punch-type failure strength measurement less affected. As the needle-free injection technology is micro-injection, and sharp-tipped punch similar, so sharp-tipped punch measured values can be used for the needle-free injection. Found by calculation, the shape and settling velocity of the punch under the strain range from 0.125 to 0.15, the best linear fitting results, the linear range of the average Young's modulus were 1.5526 ± 0.2119 MPa (flat-bottomed punch), 0.7618 ± 0.2990 MPa (spherical-tipped punch) and 0.7609 ± 0.1976 MPa (sharp-tipped punch). Gelatin (30%) of the block deep penetration test showed that the stress - depth curve and the silicone block typical of deep penetrating curve in literature are similar to the value of the surface rupture strength of the punch used in tandem with the shape varies. Pig colon tissue compression test and tear test results show that the strain range of 0.125 to 0.15 and the average Young's modulus was 0.089 ± 0.0036 MPa and the tear rate of 50 and 100 mm / min, its tear strength was 1.072 ± 0.087 N / mm and 0.796 ± 0.129 N / mm. As the punch shape will affect the measurement results, the difference up to 45% or more, it must be considered when using the experimental data, the fracture mode of application cases, and punch shape caused by the rupture patterns.

    目錄………………………………………………………………………I 表目錄…………………………………………………………………..V 圖目錄…………………………………………………………………..VI 符號說明………………………………………………………………..XI 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 4 1-3 動機與目的 13 第二章 實驗原理與設備 15 2-1 實驗原理 15 2-1-1 深壓穿透試驗原理 15 2-1-2 壓縮試驗原理 17 2-1-3 撕裂強度試驗原理 19 2-2 實驗設備 21 2-2-1 材料測試機 21 2-2-2 荷重元與放大器 22 2-2-3 測試衝頭 23 2-2-4 深壓穿透試驗測試平台 24 2-2-5 預張力裝置 25 2-2-6 分厘卡尺與數位天平 26 2-2-7 撕裂強度試驗夾具 26 2-2-8 數據資料擷取卡 27 2-2-9 測試樣品 28 第三章 實驗步驟與方法 31 3-2 樣品的準備 31 3-2-1 豬結腸的準備 31 3-2-2 明膠的準備 32 3-3 試片厚度的量測方法 33 3-4 深壓穿透試驗 33 3-4-1 塊狀軟組織深壓穿透試驗方法 33 3-4-2 薄片狀軟組織深壓穿透試驗方法 34 3-4-3 深壓穿透試驗參數 38 3-5 壓縮試驗方法 38 3-6 撕裂強度試驗方法 39 第四章 結果與討論 41 4-1 深壓穿透試驗 41 4-1-1 深壓穿透試驗受力響應模式 41 4-1-1-1 豬結腸組織深壓穿透試驗應力-應變關係 41 4-1-1-2 明膠深壓穿透試驗應力與深度關係 44 4-1-2 深壓穿透試驗破裂強度量測結果 48 4-1-2-1 豬結腸組織厚度對破裂強度之影響 48 4-1-2-2 豬結腸組織量測位置對破裂強度之影響 50 4-1-2-3 衝頭形狀對豬結腸試片破裂強度之影響 54 4-1-2-4 衝頭沉降速度對豬結腸試片破裂強度之影響 57 4-1-2-5 衝頭沉降速度對明膠破裂強度之影響 63 4-1-3 深壓穿透試驗楊氏係數計算結果 66 4-1-3-1 線性擬合範圍之篩選 66 4-2 壓縮試驗 70 4-3 撕裂強度試驗 72 第五章 結論 73 5-1 豬結腸組織 73 5-2 明膠 74 5-3 未來工作與建議 75 附錄一......................................................................................................76 參考文獻..................................................................................................78 自述..........................................................................................................82

    [1] 魯大中,手握式軟組織剛性量測器之設計,國立成功大學機械所碩士論文,2006。
    [2] Baxter, J., Mitragotri, S., 2005, “Jet-induced Skin Puncture and Its Impact on Needle-free Jet Injections: Experimental Studies and a Predictive Model,” Journal of Controlled Release, 106(3), pp. 361-373.
    [3] Pereira, B. P., Lucas, P. W., and Swee-Hin, T., 1997, “Ranking the Fracture Toughness of Thin Mammalian Soft Tissues Using the Scissors Cutting Test,” Journal of Biomechanics, 30(1), pp. 91-94.
    [4] Fujishiro, M., Yhagi, N., Kashimura, K., Mizushima, Y., Oka, M., Enomoto, S., Kakushima, N., Kobayashi, K., Hashimoto, T., Iguchi, M., Shimizu, Y., Ichinose, M., and Omata, M., 2004, ”Comparison of Various Submucosal Injection Solutions for Maintaining Mucosal Elevation During Endoscopic Mucosal Resection,” Endoscopy 36(7), pp. 579-583.
    [5] Giudice, EL., Campbell, JD., 2006, “ Advanced Drug Delivery Reviews” ,58: 68-89.
    [6] Liu, Y., and Kendall, M. A. F., 2004, “Numerical Study of a Transient Gas and Particle Flow in a High-Speed Needle-Free Ballistic Particulate Vaccine Delivery System,” Journal of Mechanics in Medicine and Biology, 4(4), pp. 559-578.
    [7] Shergold, O. A., and Fleck, N. A., 2004, “Mechanisms of Deep Penetration of Soft Solids, with Application to the Injection and Wounding of Skin,” Proceedings: Mathematical, Physical and Engineering Sciences, 460(2050), pp. 3037-3058.
    [8] Shergold, O. A., and Fleck, N. A., 2005, “Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin,” Journal of Biomechanical Engineering, 127(5), pp. 838-848.
    [9] Shergold, O. A., and Fleck, N. A., Radford, D., 2006, “The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates,” International Journal of Impact Engineering, 32(9), pp. 1384-1402.
    [10] Dombi, G.W., R.C. Haut, W.G. Sullivan, 1993, “Correlation of High-speed Tensile Strength with Collagen Content in Control and Lathyritic Rat Skin.,” J Surg Res., 54(1), pp. 21-8.
    [11] Y.C. Fung, ”Biomechanics, Mechanical Properties of Living Tissues,” second edition.
    [12] Shergold, O. A., and Fleck, N. A., King, T.S., 2006, “The Penetration of a Soft Solid by a Liquid Jet, with Application to the Administration of a Needle-free Injection,” Journal of Biomechanics, 39(14), pp. 2593-2602.
    [13] Agache, P.G., Monneur, C., Leveque, J. L., and Rigal, J., 1980, “Mechanical Properties and Young's Modulus of Human Skin in Vivo,” Archives of Dermatological Research, 269(3), pp. 221-232.
    [14] Gasser, T.C., P. Gudmundson, G. Dohr, 2009, “Failure Mechanisms of Ventricular Tissue Due to Deep Penetration,” Journal of Biomechanics, 42(5), pp. 626-633.
    [15] Pereira, B.P., P.W. Lucas, T. Swee-Hin, 1997, “Ranking the Fracture Toughness of Thin Mammalian Soft Tissues Using the Scissors Cutting Test,” Journal of Biomechanics, 30(1), pp. 91-94.
    [16] 蔡錫堯, 2007, ”材料實驗”, 新文京開發出版有限公司,
    [17] Samir Mitragotri, 2005, “Immunization Without Needles,” Nature Review, pp. 905-916.
    [18] 圖解人體地圖,松村讓兒,暢文出版社,2006。
    [19] 解剖學原理與實用,陶托拉(林齊宣 譯),合記出版社,1988。
    [20] Yahagi, N., Neuhaus, H., Schumacher, B., Neugebauer, A., Kaehler, G. F. Schenk, M. Fischer, K., Fujishiro, M., and Enderle, M. D., 2009, “Comparison of Standard Endoscopic Submucosal Dissection (ESD) Versus An Optimized ESD Technique For The Colon an Animal Study,” Endoscopy, 41, pp. 340-345.
    [21] 梁崇正, 2002, “明膠的溶膠-凝膠向變化與為乳液-有機凝膠向變化”中央大學化學工程與材料工程研究所。
    [22] 中華民國國家標準, 1996, “塑膠薄膜及薄片之撕裂強度試驗法”。

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE