| 研究生: |
施雅萱 Shih, Ya-Hsuan |
|---|---|
| 論文名稱: |
具有穿隧接面之串接式發光二極體的數值模擬研究 Numerical Studies of Cascade Light-Emitting Diodes with Tunnel Junctions |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 共同指導教授: |
郭艷光
Kuo, Yen-Kuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氮化物 、穿隧接面 、數值模擬 、串接式發光二極體 |
| 外文關鍵詞: | tunnel-junction, light-emitting diodes, LEDs, GaN, numerical simulation |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是使用APSYS (Crosslight Software Inc.)數值模擬軟體,以模擬分析及理論計算的方法,去研究以三族氮化物為基礎材料之穿隧接面與串接式發光二極體的結構設計及物理機制。
第一章部分,簡介氮化物發光二極體的發展里程碑及市場概況,並詳加描述氮化物材料系統獨有之極化效應相關原理與計算 (自發極化和壓電極化),以及efficiency droop現象在氮化物發光二極體所涵蓋的問題與各研究團隊提出的研究成果及解決方式,最後介紹氮化物穿隧接面及串接式發光二極體的原理與應用。
第二章部分,介紹APSYS數值模擬軟體在發光二極體中所使用之物理模型與本研究所使用的相關材料參數,例如:能帶間隙的計算、輻射和非輻射複合、漂移及擴散模型、量子井中光子的產生、以及interband穿隧模型。
第三章部分,利用極化工程設計穿隧接面,在PN重摻雜層插入一層本質氮化銦鎵層,探討中間本質氮化銦鎵的銦含量及兩側PN重摻雜層的摻雜濃度在負偏壓之下,各結構穿隧電流密度之大小,並在中間本質氮化銦鎵及兩側PN重摻雜層提出合理的銦含量及摻雜濃度。隨後,以氮化鋁鎵/氮化銦鎵多層交替的結構取代單層的氮化銦鎵,模擬結果顯示,通過適當的極化工程結構設計,利用氮化鋁鎵/氮化銦鎵多層交替的結構可以獲致低電阻率和優異穿隧特性的穿隧接面。
第四章部分,詳細介紹了本論文中所參考的單顆藍光和綠光發光二極體的結構,合理調整模擬參數和實驗數據以達到最大的一致性。之後,使用穿隧接面垂直堆疊多個綠光發光二極體集成在單顆元件中,而串接式綠光發光二極體通過在相對較低的電流密度下工作,與相同輸出功率水平的單個LED對應物相比,具有抑制的歐傑複合和高量子效率。
第五章部分,簡化4-1章節的藍光及綠光發光二極體結構,使用穿隧接面堆疊氮化銦鎵兩個綠光及一個藍光發光二極體,結合磷化鋁鎵銦黃光及紅光發光二極體以獲致高演色性,並利用電流的改變而調配出不同的色溫之白光發光光源。接著使用穿隧接面堆疊氮化銦鎵五個不同波長發光二極體,使其達半高全寬約90 nm之寬頻譜設計。最後,進一步改善寬頻譜發光二極體的結構,設計出只需堆疊三個氮化銦鎵發光二極體即可達到半高全寬為110 nm的單片寬頻譜發光二極體結構。
第六章部分,統整前述的研究成果。最後,展示單片無螢光粉全彩光串接式發光二極體之初步模擬成果。本文進行的數值模擬結構設計,期望能為商用發光二極體提供創新的技術及實現新一代的性能。
The work in this dissertation is aimed towards understanding and improving the design of III-nitride based tunnel junctions and tunnel-junction light-emitting diodes (LEDs) through physical modeling and numerical simulation approach by a commercial TCAD simulation tool APSYS.
In chapter 1, brief introduction to the developmental milestones, applications, and potential markets of III-nitride LEDs is provided. Next, two characteristics of nitride-based devices of the droop and polarization effects are unique to this material system. The principles and calculations of spontaneous and piezoelectric polarization, and the issues and solutions of efficiency droop will be explained. Finally, the principles and applications of III-nitride tunnel junctions and tunnel-junction LEDs are introduced.
In chapter 2, fundamental physical mechanisms and material parameters of III-nitride tunnel junctions and tunnel-junction LEDs used in this dissertation are introduced. The physical mechanisms under study include bulk band structure, radiative and non-radiative recombinations, drift-diffusion model, photon generation in QWs, and interband tunneling.
In chapter 3, the use of undoped InGaN material between the heavily doped n-GaN and p-GaN layers with various indium compositions and doping concentrations is analyzed. Afterwards, the structural optimization and polarization engineering of InGaN/AlGaN multi-layer tunnel junctions are systemically investigated. The simulation results demonstrate that, with appropriate structural designs, InGaN/AlGaN multi-layer tunnel junctions via polarization engineering, low-resistivity and excellent tunneling characteristics can be achieved.
In chapter 4, layer structures of the reference single blue and green LEDs used in this dissertation are introduced in detail. The simulation parameters and experimental data can be reasonably adjusted to achieve maximum consistency. Then, more green LEDs are grown in a continuous vertical stack using a tunnel junction to integrate the multiple LEDs in a single device. The tunnel-junction green LED can be operated at relatively low current density that possesses suppressed Auger recombination and high quantum efficiency when compared with its single LED counterpart at the same level of output power.
In chapter 5, the goal is to simplify the blue and green LED structures of Section 4-1. Two unit green LEDs and one unit blue LED are stacked with the use of tunnel junctions. The blue/green dual-color tunnel-junction LED under various currents combined with AlGaInP-based yellow and red LEDs under fixed current may be used to achieve high CRI white light emitter. Next, five different wavelength InGaN LEDs are stacked to achieve broad-band spectrum with FWHM of around 90 nm. Finally, design of broad-band spectrum LEDs is further improved. A simulated monolithic tunnel-junction LED is demonstrated with three unit stacked LEDs with a wide FWHM of approximately 110 nm.
In chapter 6, summary of the dissertation is provided and some future work expectations are proposed. The preliminary simulation results of the monolithic stacked phosphor-free full-color tunnel-junction LED is demonstrated at the end of dissertation.
[1] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys., vol. 94, no. 7, pp. 4457–4460, Oct. 2003.
[2] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys,” Appl. Phys. Lett., vol. 87, no. 24, pp. 242104-1–242104-3, Dec. 2005.
[3] C. E. C. Wood and D. Jena, Eds., Polarization effects in semiconductors: from ab initio theory to device application. New York, London: Springer, 2008.
[4] F. Fichter, “Über aluminiumnitrid,” Z. Für Anorg. Chem., vol. 54, no. 1, pp. 322–327, Jul. 1907.
[5] F. Fischer and F. Schröter, “Über neue metall‐stickstoff‐verbindungen und ihre stabilität an der hand des periodischen systems,” Berichte Dtsch. Chem. Ges., vol. 43, no. 2, pp. 1465–1479, Apr. 1910.
[6] W. C. Johnson and J. B. Parsons, “Nitrogen compounds of gallium. I, II,” J. Phys. Chem., vol. 36, no. 10, pp. 2588–2594, Jan. 1931.
[7] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Lumin., vol. 4, no. 1, pp. 63–66, Jul. 1971.
[8] I. Akasaki, “Key inventions in the history of nitride-based blue LED and LD,” J. Cryst. Growth, vol. 300, no. 1, pp. 2–10, Mar. 2007.
[9] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, no. Part 2, No.1A/B, pp. L8–L11, Jan. 1993.
[10] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687–1689, Mar. 1994.
[11] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, no. Part 2, No. 7A, pp. L797–L799, Jul. 1995.
[12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, no. Part 2, No. 10B, pp. L1332–L1335, Oct. 1995.
[13] K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Vis. Environ., vol. 22, no. 1, pp. 2–5, Jan. 1998.
[14] “The Nobel prize in physics 2014,” NobelPrize.org. [Online]. Available: https://www.nobelprize.org/prizes/physics/2014/summary/.
[15] “全球LED 元件產業發展趨勢,” 電力電子, vol. 16, no. 6, pp. 72–78, 2018.
[16] E. F. Schubert, Light-emitting diodes, 2nd edition. New York: Cambridge University Press, 2006.
[17] M. Kneissl and J. Rass, Eds., III-nitride ultraviolet emitters: Technology and applications. New York: Springer International Publishing, 2016.
[18] J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A, vol. 207, no. 10, pp. 2217–2225, Jul. 2010.
[19] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev., vol. 7, no. 3, pp. 408–421, Jan. 2013.
[20] J.-J. Huang, H.-C. Kuo, and S.-C. Shen, Eds., Nitride semiconductor light-emitting diodes (LEDs). Cambridge: Woodhead Publishing, 2018.
[21] A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, “On the origin of IQE-‘droop’ in InGaN LEDs,” Phys. Status Solidi C, vol. 6, no. S2, pp. S913–S916, May 2009.
[22] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park,“Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, pp. 183507-1–183507-3, Oct. 2007.
[23] Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett., vol. 95, no. 1, pp. 011116-1–011116-3, Jul. 2009.
[24] I. V. Rozhansky and D. A. Zakheim, “Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density,” Semiconductors, vol. 40, no. 7, pp. 839–845, Jul. 2006.
[25] B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, pp. 181103-1–181103-3, Oct. 2007.
[26] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater., vol. 5, no. 10, pp. 810–816, Oct. 2006.
[27] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, no. 14, pp. 141101-1–141101-3, Oct. 2007.
[28] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett., vol. 94, no. 19, pp. 191109-1–191109-3, May 2009.
[29] G.-B. Lin, D. Meyaard, J. Cho, E. Fred Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett., vol. 100, no. 16, pp. 161106-1–161106-4, Apr. 2012.
[30] J.-I. Shim, D.-P. Han, H. Kim, D.-S. Shin, G.-B. Lin, D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Efficiency droop in AlGaInP and GaInN light-emitting diodes,” Appl. Phys. Lett., vol. 100, no. 11, pp. 111106-1–111106-4, Mar. 2012.
[31] M.-C. Tsai, S.-H. Yen, Y.-C. Lu, and Y.-K. Kuo, “Numerical study of blue InGaN light-emitting diodes with varied barrier thicknesses,” IEEE Photonics Technol. Lett., vol. 23, no. 2, pp. 76–78, Jan. 2011.
[32] Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, T.-C. Hsu, and Y.-J. Shen, “Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1214–1220, Aug. 2010.
[33] S.-H. Yen, M.-L. Tsai, M.-C. Tsai, S.-J. Chang, and Y.-K. Kuo, “Investigation of optical performance of InGaN MQW LED with thin last barrier,” IEEE Photonics Technol. Lett., vol. 22, no. 24, pp. 1787–1789, Dec. 2010.
[34] S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Hsu, and Y.-K. Kuo, “Effect of n-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 21, no. 14, pp. 975–977, Jul. 2009.
[35] T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys., vol. 37, no. Part 2, No. 4A, pp. L398–L400, Apr. 1998.
[36] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett., vol. 80, no. 7, pp. 1204–1206, Feb. 2002.
[37] J. Piprek, Nitride semiconductor devices: Principles and simulation. John Wiley & Sons, 2007.
[38] J. Singh, Electronic and optoelectronic properties of semiconductor structures. New York: Cambridge University Press, 2003.
[39] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334–344, Dec. 1999.
[40] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures,” Science, vol. 327, no. 5961, pp. 60–64, Jan. 2010.
[41] J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined Stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 4, pp. 1080–1091, Jul. 2009.
[42] R. A. Hogg, C. E. Norman, A. J. Shields, M. Pepper, and N. Iizuka, “Comparison of spontaneous and piezoelectric polarization in GaN/Al0.65Ga0.35N multi-quantum-well structures,” Appl. Phys. Lett., vol. 76, no. 11, pp. 1428–1430, Mar. 2000.
[43] L. Jia, E. T. Yu, D. Keogh, P. M. Asbeck, P. Miraglia, A. Roskowski, and R. F. Davis, “Polarization charges and polarization-induced barriers in AlxGa1−xN/GaN and InyGa1−yN/GaN heterostructures,” Appl. Phys. Lett., vol. 79, no. 18, pp. 2916–2918, Oct. 2001.
[44] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, no. 2, pp. 250–252, Jul. 2000.
[45] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, no. 14, pp. 2006–2008, Oct. 1998.
[46] F. Renner, P. Kiesel, G. H. Döhler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,” Appl. Phys. Lett., vol. 81, no. 3, pp. 490–492, Jul. 2002.
[47] L. Esaki, “New phenomenon in narrow germanium p–n junctions,” Phys. Rev., vol. 109, no. 2, pp. 603–604, Jan. 1958.
[48] S.-J. Chang, C.-S. Chang, Y.-K. Su, R.-W. Chuang, W.-C. Lai, C.-H. Kuo, Y.-P. Hsu, Y.-C. Lin, S.-C. Shei, H.-M. Lo, J.-C. Ke, and J.-K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photonics Technol. Lett., vol. 16, no. 4, pp. 1002–1004, Apr. 2004.
[49] J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett., vol. 107, no. 9, pp. 091105-1–091105-5, Aug. 2015.
[50] J.-Y. Chang, S.-H. Yen, Y.-A. Chang, B.-T. Liou, and Y.-K. Kuo, “Numerical investigation of high-efficiency InGaN-based multijunction solar cell,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4140–4145, Dec. 2013.
[51] Y.-K. Kuo, Y.-H. Shih, J.-Y. Chang, W.-C. Lai, H. Liu, F.-M. Chen, M.-L. Lee, J.- K. Sheu, “Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions,” Opt. Express, vol. 25, no. 16, pp. A777-1–A777-8, Aug. 2017.
[52] S.-J. Chang, W.-H. Lin, and C.-T. Yu, “GaN-based multiquantum well light-emitting diodes with tunnel-junction-cascaded active regions,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 366–368, Apr. 2015.
[53] S. Okawara, Y. Aoki, M. Kuwabara, Y. Takagi, J. Maeda, and H. Yoshida, “Nitride-based stacked laser diodes with a tunnel junction,” Appl. Phys. Express, vol. 11, no. 1, pp. 012701-1–012701-3, Nov. 2017.
[54] J. Piprek, “GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions,” Appl. Phys. Lett., vol. 105, no. 1, pp. 011116-1–011116-4, Jul. 2014.
[55] B. Prasad Jyoti, Solid state electronics devices, 3rd Edition. Vikas Publishing House, 2010.
[56] C. Zener, “A theory of the electrical breakdown of solid dielectrics,” Proc R Soc Lond A, vol. 145, no. 855, pp. 523–529, Jul. 1934.
[57] J. Simon, Z. Zhang, K. Goodman, H. L. Xing, T. Kosel, P. Fay, and D. Jena, “Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures,” Phys. Rev. Lett., vol. 103, no. 2, pp. 026801-1–026801-4, Jul. 2009.
[58] S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, and S. Rajan, “Polarization-engineered GaN/InGaN/GaN tunnel diodes,” Appl. Phys. Lett., vol. 97, no. 20, pp. 203502-1–203502-3, Nov. 2010.
[59] F. Medjdoub, Gallium nitride (GaN): Physics, devices, and technology. Taylor & Francis, 2015.
[60] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B, vol. 60, no. 12, pp. 8849–8858, Sep. 1999.
[61] F. Bernardini and V. Fiorentini, “Macroscopic polarization and band offsets at nitride heterojunctions,” Phys. Rev. B, vol. 57, no. 16, pp. R9427–R9430, Apr. 1998.
[62] F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B, vol. 64, no. 8, pp. 085207-1–085207-7, Aug. 2001.
[63] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, no. 2, pp. 023522-1–023522-10, Jul. 2006.
[64] M. F. Schubert, “Interband tunnel junctions for wurtzite III-nitride semiconductors based on heterointerface polarization charges,” Phys. Rev. B, vol. 81, no. 3, pp. 035303-1–035303-8, Jan. 2010.
[65] M. Singh, Y. Zhang, J. Singh, and U. Mishra, “Examination of tunnel junctions in the AlGaN/GaN system: consequences of polarization charge,” Appl. Phys. Lett., vol. 77, no. 12, pp. 1867–1869, Sep. 2000.
[66] C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Piezoelectric Franz–Keldysh effect in strained GaInN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 7, pp. 3786–3791, Apr. 1999.
[67] S. Barik, D. Liu, J. D. Brown, M. Wintrebert-Fouquet, A. J. Fernandes, P. P.-T. Chen, Q. Gao, V. Chan, and I. Mann, “Remote plasma chemical vapour deposition of group III-nitride tunnel junctions for LED applications,” Proc. IEEE, vol. 10940, pp. 1094018-1–1094018-8, Mar. 2019.
[68] J. Piprek, “Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions,” Appl. Phys. Lett., vol. 104, no. 5, pp. 051118-1–051118-4, Feb. 2014.
[69] I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, and M. Krames, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2532–2534, Oct. 2001.
[70] M. Kaga, T. Morita, Y. Kuwano, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “GaInN-based tunnel junctions in n–p–n light emitting diodes,” Jpn. J. Appl. Phys., vol. 52, no. 8S, pp. 08JH06-1–08JH06-4, Aug. 2013.
[71] S.-R. Jeon, C.-S. Oh, J.-W. Yang, G.-M. Yang, and B.-S. Yoo, “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1933–1935, Mar. 2002.
[72] S.-J. Chang, W.-H. Lin, and W.-S. Chen, “Cascaded GaN light-emitting diodes with hybrid tunnel junction layers,” IEEE J. Quantum Electron., vol. 51, no. 8, pp. 1–5, Aug. 2015.
[73] W.-H. Lin, S.-J. Chang, and W.-S Chen, “GaN-based dual-color light-emitting diodes with a hybrid tunnel junction structure,” J. Disp. Technol., vol. 12, no. 2, pp. 165–170, Feb. 2016.
[74] “APSYS.” by Crosslight Software Inc., Vancouver, Canada. [Online]. Available: http://www.crosslight.com.
[75] S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B, vol. 54, no. 4, pp. 2491–2504, Jul. 1996.
[76] S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol., vol. 12, no. 3, pp. 252–263, Jan. 1997.
[77] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. R10024–R10027, Oct. 1997.
[78] J. Piprek, Semiconductor optoelectronic devices: Introduction to physics and simulation. Elsevier, 2013.
[79] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, Jun. 2001.
[80] J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett., vol. 99, no. 18, pp. 181127-1–181127-3, Oct. 2011.
[81] I. Gorczyca, T. Suski, N. E. Christensen, and A. Svane, “Size effects in band gap bowing in nitride semiconducting alloys,” Phys. Rev. B, vol. 83, no. 15, Apr. 2011.
[82] B.-T. Liou, S.-H. Yen, and Y.-K. Kuo, “First-principles calculation for bowing parameter of wurtzite AlxGa1-xN,” Appl. Phys. A, vol. 81, no. 7, pp. 1459–1463, Nov. 2005.
[83] S. Nakamura and J. Piprek, “Physics of high-power InGaN/GaN lasers,” IEE Proc. -Optoelectron., vol. 149, no. 4, pp. 145–151, Aug. 2002.
[84] A. Kunold and P. Pereyra, “Photoluminescence transitions in semiconductor superlattices. Theoretical calculations for InGaN blue laser device,” J. Appl. Phys., vol. 93, no. 9, pp. 5018–5024, Apr. 2003.
[85] C. Y. Lai, T. M. Hsu, W. H. Chang, and K. U. Tseng, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys., vol. 91, no. 1, pp. 531–533, Dec. 2001.
[86] J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, no. 1, pp. 011101-1–011101-28, Jul. 2009.
[87] G. E. Shtengel, D. A. Ackerman, P. A. Morton, E. J. Flynn, and M. S. Hybertsen, “Impedance‐corrected carrier lifetime measurements in semiconductor lasers,” Appl. Phys. Lett., vol. 67, no. 11, pp. 1506–1508, Sep. 1995.
[88] M. C. Wang, K. Kash, C. E. Zah, R. Bhat, and S. L. Chuang, “Measurement of nonradiative Auger and radiative recombination rates in strained‐layer quantum‐well systems,” Appl. Phys. Lett., vol. 62, no. 2, pp. 166–168, Jan. 1993.
[89] H. Y. Ryu, K. H. Ha, J. H. Chae, K. S. Kim, J. K. Son, O. H. Nam, Y. J. Park, and J. I. Shim, “Evaluation of radiative efficiency in InGaN blue-violet laser-diode structures using electroluminescence characteristics,” Appl. Phys. Lett., vol. 89, no. 17, pp. 171106-1–171106-3, Oct. 2006.
[90] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 23, pp. 231114-1–231114-3, Dec. 2007.
[91] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl Phys Lett, vol. 94, no. 11, pp. 111109-1–11109-3, Mar. 2009.
[92] A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett., vol. 96, no. 10, pp. 103504-1–103504-3, Mar. 2010.
[93] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 97, no. 13, pp. 133507-1–133507-3, Sep. 2010.
[94] S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho1, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 23, pp. 231123-1–231123-3, Jun. 2009.
[95] E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, May 1987.
[96] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 8, pp. 081113-1–081113-3, Feb. 2009.
[97] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 99, no. 4, pp. 041112-1–041112-3, Jul. 2011.
[98] L. Riuttanen, P. Kivisaari, N. Mantyoja, J. Oksanen, M. Ali, S. Suihkonen, and M. Sopanen, “Recombination lifetime in InGaN/GaN based light emitting diodes at low current densities by differential carrier lifetime analysis,” Phys. Status Solidi C, vol. 10, no. 3, pp. 327–331, Mar. 2013.
[99] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett., vol. 98, no. 16, pp. 161107-1–161107-3, Apr. 2011.
[100] F. Bertazzi, M. Goano, and E. Bellotti, “A numerical study of Auger recombination in bulk InGaN,” Appl. Phys. Lett., vol. 97, no. 23, pp. 231118-1–231118-3, Dec. 2010.
[101] X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, and A. Matulionis, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett., vol. 97, no. 3, pp. 031110-1–031110-3, Jul. 2010.
[102] M. Brendel, M. Brendel, A. Kruse, H. Jonen, L. Hoffmann, H. Bremers, U. Rossow, and A. Hangleiter, “Auger recombination in GaInN/GaN quantum well laser structures,” Appl. Phys. Lett., vol. 99, no. 3, pp. 031106-1–031106-3, Jul. 2011.
[103] J.-R. Chen, Y.-C. Wu, S.-C. Ling, T.-S. Ko, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes,” Appl. Phys. B, vol. 98, no. 4, pp. 779–789, Mar. 2010.
[104] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006.
[105] V. O. Turin, “A modified transferred-electron high-field mobility model for GaN devices simulation,” Solid-State Electron., vol. 49, no. 10, pp. 1678–1682, Oct. 2005.
[106] D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, Dec. 1967.
[107] D. Bednarczyk and J. Bednarczyk, “The approximation of the Fermi-Dirac integral F12 (η),” Phys. Lett. A, vol. 64, no. 4, pp. 409–410, Jan. 1978.
[108] S. Tiwari, Compound semiconductor device physics. Academic Press, 2013.
[109] Y. Sun, Y.-H. Cho, H.-M. Kim, and T. W. Kang, “High efficiency and brightness of blue light emission from dislocation-free InGaN∕GaN quantum well nanorod arrays,” Appl Phys Lett, vol. 87, no. 9, pp. 093115-1–093115-3, Jul. 2005.
[110] N. Khan, N. Nepal, A. Sedhain, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in InN epilayers probed by photoluminescence,” Appl. Phys. Lett., vol. 91, no. 1, pp. 012101-1–012101-3, Jul. 2007.
[111] K. Kumakura, T. Makimoto, and N. Kobayashi, “Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., vol. 93, no. 6, pp. 3370–3375, Mar. 2003.
[112] K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,” Appl. Phys. Lett., vol. 83, no. 5, pp. 878–880, Aug. 2003.
[113] B. G. Streetman and S. Banerjee, Solid state electronic devices, Seventh edition. Boston: Pearson, 2015.
[114] E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181–188, Jan. 1960.
[115] C. B. Duke, Tunneling in solids. New York: Academic Press, 1969.
[116] J. Moll, Physics of semiconductors. New York: McGraw-Hill, 1964.
[117] S. Krishnamoorthy, P. S. Park, and S. Rajan, “Demonstration of forward inter-band tunneling in GaN by polarization engineering,” Appl. Phys. Lett., vol. 99, no. 23, pp. 233504-1–233504-3, Dec. 2011.
[118] D. Cherns, S. J. Henley, and F. A. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2691–2693, Apr. 2001.
[119] S. Krishnamoorthy, F. Akyol, P. S. Park, and S. Rajan, “Low resistance GaN/InGaN/GaN tunnel junctions,” Appl. Phys. Lett., vol. 102, no. 11, pp. 113503-1–113503-5, Mar. 2013.
[120] M.-C. Tsai, B. Leung, T.-C. Hsu, and Y.-K. Kuo, “Low resistivity GaN-based polarization-induced tunnel junctions,” J. Light. Technol., vol. 31, no. 22, pp. 3575–3581, Nov. 2013.
[121] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 92, no. 5, pp. 053502-1–053502-3, Feb. 2008.
[122] M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency drop in green InGaN/GaN light emitting diodes: The role of randomalloy fluctuations,” Phys. Rev. Lett., vol. 116, no. 2, pp. 027401-1–027401-5, Jan. 2016.
[123] M.-C. Tsai, B. Leung, T.-C. Hsu, and Y.-K. Kuo, “Tandem structure for efficiency improvement in GaN based light-emitting diodes,” J. Light. Technol., vol. 32, no. 9, pp. 1801–1806, May 2014.
[124] F. Akyol, S. Krishnamoorthy, and S. Rajan, “Tunneling-based carrier regeneration in cascaded GaN light emitting diodes to overcome efficiency droop,” Appl. Phys. Lett., vol. 103, no. 8, pp. 081107-1–081107-4, Aug. 2013.
[125] A. Pan and C. O. Chui, “Modeling direct interband tunneling. I. Bulk semiconductors,” J Appl Phys, vol. 166, no. 5, pp. 054508-1–054508-9, Aug. 2014.
[126] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274–1278, May 2005.
[127] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs–technology status and market applications,” Phys. Status Solidi A, vol. 194, no. 2, pp. 380–388, Oct. 2002.
[128] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photonics Technol. Lett., vol. 15, no. 1, pp. 18–20, Jan. 2003.
[129] K-T. Lam, W.-H. Lin, S.-C. Shei, N.-M. Lin, W.-S. Chen, and S.-J. Chang, “White-light emission from GaN-based TJ LEDs coated with red phosphor,” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1150–1153, Sep. 2016.
[130] Y. Ohno and W. Davis, “Rationale of color quality Scale”, 2010. [Online]. http://www.digikey.com/us/en/techzone/lighting/resources/articles/rationale-of-color-quality-scale.html.
[131] L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys., vol. 112, no. 8, pp. 083101-1–083101-8, Oct. 2012.
[132] T.-H. Wang and Y.-K. Kuo, “Spectral competition of chirped dual-wavelength emission in monolithic InGaN multiple-quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 102, no. 17, pp. 171112-1–171112-3, Apr. 2013.
[133] Y.-K. Kuo, T.-H. Wang, Y.-A. Chang, J.-Y. Chang, F.-M. Chen, and Y.-H. Shih, “Auger recombination in monolithic dual-wavelength InGaN light-emitting diodes,” J. Disp. Technol., vol. 12, no. 11, pp. 1398–1402, Nov. 2016.
[134] M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett., vol. 98, no. 11, pp. 111114-1–111114-3, Mar. 2011.
[135] “Seoul semiconductor, technology, SunLike.” [Online]. Available: http://www.seoulsemicon.com/en/technology/SunLike/.
[136] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” J. Appl. Phys., vol. 114, no. 7, pp. 071101-1–071101-14, Aug. 2013.
校內:2024-07-30公開