| 研究生: |
李端 Li, Tuan |
|---|---|
| 論文名稱: |
利用十二個三維電磁極於微感應馬達轉速節制 Speed Regulation for Induction-type Micro-motor by Twelve Three-dimensional EM Poles |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 微型馬達 、轉速節制 、順划控制 |
| 外文關鍵詞: | Micro-motor, Speed Regulation, Sliding Mode Control |
| 相關次數: | 點閱:45 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對電磁式感應微型馬達之轉子做定轉速控制,以十二個三維電磁極(內藏鐵芯)做為驅動電極,同時搭配光二極體做轉子轉速偵測。 本論文首先對微馬達轉子進行動態分析以擬定控制策略,藉此設計一順划控制器以達到轉速節制與轉子偏距(轉子偏心造成之徑向偏擺)抑制。 本文並提出光感測器與微轉子結構之製程設計並對三維微型電磁極之微製造做改良。
本研究提出一創新T型轉子結構設計。 主要優點可大幅降低轉子內徑與軸承結構接觸時之摩擦力,並維持原有之微小間隙。 本設計利用犧牲層技術使轉子結構產生規則性孔洞,進而減少轉子轉動慣量,降低轉子啟動時所需之龐大扭力,提升微馬達低速時之效能。 此規則性開孔亦可配合光感測器,作為轉子轉速偵測之透光孔。 此外,本論文於動態分析發現本論文所提出之微馬達具有頻率雙尺度效應。 主要原因由於偏心效應會造成微轉子具有低頻之公轉運動,此低頻之公轉效應與轉子之自轉頻率相差約10倍以上。 此效應在巨觀馬達中一般可以忽略,但是對於微馬達中的轉動穩定性以及效能影響卻是相當顯著。 此外,由於三維電磁極產生之電磁力為時變且非線性,因此使得控制器的設計上更加複雜。 本文提出一雙頻式反運算策略,同時利用高頻以及低頻控制訊號並搭配運用反運算策略,可有效避免計時器之誤差,並反推系統所需之電流大小與電流頻率,使定子產生所需控制力,使微轉子穩定轉動。 本論文初步藉由電腦模擬驗證所提出之控制策略,模擬結果顯示其具有良好之轉速節制與偏距抑制效能。
The main goal of this research is to regulate the spinning speed of an induction-type micro-motor which is driven by twelve three-dimensional electro-magnetic poles(3D EM Poles) in which individually iron core is embedded. Photodiode array is included to detect the real-time speed of the rotating disc. To investigate the dynamics of the micro-motor, commercial software MATLAB is employed. By dual-frequency controller design, Low-frequency signal is applied to the system to regulate the precession effect induced by the eccentricity of the rotor. The rotor spinning frequency is about 10 times against the precession frequency. Since the magnetic force is highly nonlinear and time-varying, the characteristic of 3D EM Poles is described by a nonlinear mathematic model, in terms of frequency and amplitude of the applied current. Based on the mathematic model of the magnetic force by the 12 3D EM poles, the Sliding Mode Controller (SMC) is synthesized to calculate the required magnetic force to simultaneously regulate the offset, precession and spinning speed of the eccentric micro-rotor. The intensive computer simulation results exhibit superior performance of the control strategies for speed regulation.
[1] L. -S. Fan, Y. -C. Tai, R. S. Muller, “IC-Processed Electrostatic Micro-motors,” Technical Digest - International Electron Devices Meeting, p 666-669, Dec 1988, Tech Dig Int Electron Devices Meet 1988.
[2] L. -S. Fan, Y. -C. Tai, R. S. Muller, “A comparative study of bearing designs and operational environments for harmonic side-drive micromotors,” Proc IEEE Micro Electro Mech Syst Workshop, p 171-176, 1992.
[3] M. Mehregany, S. D. Senturia, J. H. Lang, “Measurement of Wear in Poly silicon Micromotors,” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 39, No. 5, MAY 1992.
[4] I. -Y. Huang, G. -M. Chen, Y. -C. Lee, “Low-friction large step-size micromotor driven by a scratch-drive actuator with bounceback mechanism,” J. Micro/Nanolith. MEMS MOEMS, Vol. 7, 043026 (2008).
[5] C. H. Ahn, Y. J. Kim, and M. G. Allen, “A planar variable reluctance magnetic micromotor with fully integrated stator and coils,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 2. No. 4, DECEMBER 1993.
[6] 劉俊昇,“微型三維電磁極設計與驅動”,國立成功大學機械工程學系碩士論文,民國98年。
[7] F.Blaschke,”The Principle of field orientation as applied to the New transvektor closed-loop control system for rotating-field machines,”Siemens Review,vol.39,vol.5,pp.217-220,1972.
[8] R. Gabriel, W. Leonhard, C. J. Nordby, ”Field-oriented control of a
Standard ac motor using microprocessors,” IEEE Trans. Ind. Appl., vol. 16, No. 2,pp.186-192,Mar./Apr.1980.
[9] 廖顯奎, “當代光電工程,” (初版)滄海, 2006.
[10] N. -C. Tsai, C. -W. Chiang, H. -Yi. Li, “Innovative active magnetic bearing design to reduce cost and energy consumption,”
Electromagnetics, v 29, n 5, p 406-420, July 2009.
[11] 劉昌煥, “交流電機控制-向量控制與直接轉矩控制原理,”(第四版)東華書局, 2008.
[12] K. K. Shyu, H. J. Shieh, “A New Switching Surface Sliding-Mode Speed Control for Induction Motor Drive Systems,” IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 11, NO. 4, JULY 1996.
[13] W. Perruquetti, J. P. Barbot, “Sliding Mode Control In Engineering,” Marcel Dekker, 2002.
[14] J. J. E. Slotine, W. Li, “Applied Nolinear Control,” Prentice Hall, 1991.
[15] M. Mehregany, P. Nagarkar, S. D. Senturia, J. H. Lang, “Operation of microfabricated harmonic and ordinary side-drive motors,” Proceedings. IEEE Micro Electro Mechanical Systems-An Investigation of Micro Structures, Sensors, Actuators, Machines, p 1-8, 1990.
[16] P. Surbled, E. Dufour-Gergam, A. Bosseboeuf, J. -P. Gilles, J. -P. Grandchamp, “Improvement of a classical electrodeposition process for electrostatic variable-capacitance, side-drive micromotor fabrication,” Journal of Micromechanics and Microengineering, v 6, n 1, p 42-45, Mar 1996.
[17] H. Guckel, K. J. Skrobis, T. R. Christenson, J. Klein, S. Han,
B. Choi, E. G. Fovell, T. W. Chapman, “Fabrication and testing of the planar magnetic micromotor,” Journal of Micromechanics and Microengineering, v 1, n 3, p 135-138, Sep 1991.
[18] A. B. Frazier, M. G. Allen, “Uses of electroplated aluminum for the development of microstructures and micromachining processes,” Journal of Microelectromechanical Systems, v 6, n 2, p 91-98, Jun 1997.
[19] C. H. Lee, K. Jiang, “Fabrication of thick electroforming micro mould using a KMPR negative tone photoresist,” Journal of Micromechanics and Microengineering, v 18, n 5, May 1, 2008.
[20] J. D. Schaub, S. J. Koester, G. Dehlinger, Q. C. Ouyang, D. Guckenberger, M. Yang, D. Rogers, J. Chu, A. Grill, “High speed, lateral PIN photodiodes in silicon technologies,” Proceedings of SPIE - The International Society for Optical Engineering, v 5353, p 1-11, 2004, Semiconductor Photodetectors.