簡易檢索 / 詳目顯示

研究生: 蘇立軒
Su, Li-Shiuan
論文名稱: 新型強度比率法應用於扭轉型液晶盒厚度量測
New Modified Total Intensity Ratio Method for Measuring the Cell Gap of Twisted Nematic Liquid Crystal Cell
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 80
中文關鍵詞: 液晶盒厚度.極化調變電光調變器扭轉向列型液晶
外文關鍵詞: Polarization Modulation, Twisted Nematic Liquid Crystal (TNLC), Cell Gap., electro-optic modulator
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光旋轉調變器研發三種新的強度比率法架構來量測扭轉向列型液晶的液晶盒厚度,其中前兩種架構為液晶盒厚度的單點光學量測系統,第三種架構為液晶盒厚度的全場光學量測系統。偏光旋轉調變器是由兩片四分之波片以及電光調變器組成,而電光調變器是利用由訊號產生器提供的鋸齒波訊號作為驅動訊號。
    偏光旋轉調變器可替代旋轉的偏振片,用來調變偏振光的旋轉角度,因此我們可以達到更精確的量測結果以及縮短量測時間。在我們的全場光學量測系統中,利用電荷耦合元件(CCD)可以擷取到扭轉向列型液晶盒厚度的全場影像。與原來的強度比率法比較,這三種方法的可以提供更快的偏光旋轉調變速度,更可靠的量測架構以及全場的光學檢測。

    This study presents three modified total intensity ratio methods (TIRM) using the polarization rotation modulator for measuring the cell gap of Twisted Nematic Liquid Crystal (TNLC) cell. The first two modified methods are single point measuring systems and the third modified method is the full-field measuring system. The polarization rotation modulator is composed of two quarter waveplates and an electro-optic modulator driven by a saw-tooth waveform signal supplied by a function generator.
    We use the polarization rotation modulator to replacing the conventional rotating polarizer. As a result, the accuracy and measuring time could be much improved in modified TIRMs. In our full-field measuring system, the CCD is used as photodetector, and we can measure the full-field image of the cell gap of of Twisted Nematic Liquid Crystal cell.
    As compared to the conventional TIRM, the modified TIRMs has a faster polarization rotating velocity, more stable setup and full-field measuring ability.

    Table of Contents Abstract I 中文摘要 II 誌謝 III Table of Contents IV List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the cell gap measurement methods 1 1.3 Overview of Chapters 3 Chapter 2 Twisted Nematic Liquid Crystal 8 2.1 Liquid Crystal Phases 8 2.2 Liquid Crystal deformations and elastic constants 8 2.3 Birefringence of LC 9 2.4 Pretilt Angle 10 2.5 Twisted Nematic Liquid Crystal cell 11 2.6 The Jones matrix of a TN-LC layer 12 Chapter 3 Basic Theory in Heterodyne Interferometry 20 3.1 Common-Path Heterodyne Interferometry 20 3.2 The Modulating Technique of Electro-Optic Modulator 20 3.2.1 Electro-Optic Effect 22 3.2.2 Electro-Optic Modulation 22 3.2.3 Amplitude Modulation 23 3.2.4 Phase Modulation 26 3.3 Calibration the axis alignment of an EO modulator 28 3.4 The polarization rotation modulator 29 Chapter 4 Principle of the conventional single-wavelength TIRM 35 4.1 The setup of the conventional single-wavelength TIRM 35 4.2 Principle 35 4.3 Conclusions 37 Chapter 5 New Optical Setup in a Modified TIRM 40 5.1 Three Basic Optical Arrangements 40 5.1.1 The first modified single point measurement without beam splitter 40 5.1.2 The second modified single point measurement with beam splitter 40 5.1.3 The Full-Field measurement Structure 41 5.2 Principle 42 5.2.1 The first modified single point measurement without beam splitter 42 5.2.2 The second modified single point measurement with beam splitter 45 5.2.3 New Structure for Full-field measurement 47 Chapter 6 Experimental Setup and Results 57 6.1 Experimental Setup of the two single point measurement methods 57 6.2 Experimental setup of the full-field measurement method 57 6.3 Calibration in the measurement System 58 6.4 Methodology for using CPLD and CCD 59 6.5 Experiment Results 60 6.5.1 The first modified single point measurement results 60 6.5.2 The second modified single point measurement results 61 6.5.3 The Full-Field measurement results 61 6.6 Error Analysis 62 6.6.1 The Sources of Experimental errors 62 6.6.2 The errors caused by the azimuth angle α and the twist angle of TN-LC cell 64 Chapter 7 Conclusion 73 Bibliography 74 Autobiography 80

    Bibliography

    Arnaud, A., Silveira, F., Frins, E.M., Bubra, A., and Perciante, C.D., “Precision synchronous polarometer with linear response for the measurement of small rotation angles,” Applied Optics, Vol. 39, pp.
    2601-2604, 2000.

    Azzam, R.M.A., and Bashara, N.M., Ellipsometry and Polarized Light,
    North-Holland, New York, 1988.

    Bos, P.J., Koehler, K.R., “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst., Vol. 113, pp. 329-339 , 1984.

    Chou, C., Huang, Y.C., Feng, C.M. and Chang, M., “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys., Vol. 36, pp.356-359,
    1997.

    Chou, C., Shyu, J.C., Huang, Y.C., Yuan, C.K., “Common-path optical heterodyne profilometer: a configuration,” Applied Optics, Vol. 37, No.
    19, pp.4137-4142, 1998.

    Freitas, J.M. De and Player, M.A., “Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne
    Interferometry,” Meas. Sci. Tech., Vol. 4, pp. 1173-1176, 1993.

    Gazalet, M.G.., Ravez, M., Haine, F., Bruneel C., and Bridoux E., “Acousto-optic low frequency shifter,” Appl. Opt., Vol. 33, pp.
    1293-1298, 1994.

    Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,”
    Opt. Lett., Vol. 19, pp. 213-215, 1994.

    Gwag, J.S., Lee, S.H., Han, K.Y., Kim, J.C., and Yoon, T.H., “Novel Cell
    Gap Measurement Method for a Liquid Crystal Cell,” Jpn. J. Appl. Phys.,
    Vol. 41, pp. L79-L82, 2002.

    Gwag, J.S., Park, K.H., Lee, G.D., Yoon T.H., and Kim, J.C., “Simple
    Cell Gap Measurement Method for Twisted-Nematic Liquid Crystal
    Cells,” Jpn. J. Appl. Phys., Vol. 43, pp. L30-L32, 2004.

    Haus, H.A., Waves and fields in optoelectronics, Prientice-Hall, Inc.,
    Englewood Cliffs, New Jersey, Ch. 12, 1984.

    Hou, W. and Wilkening, G., “Investigation and compensation of nonlinearity of heterodyne interferometers,” Pre. Eng., Vol. 14, No. 2, pp.
    91-98,1992.
    Jones, R.C., “A new calculus for the treatment of optical system,” J. Opt.
    Soc. Am., Vol. 31, 500-503, 1941.

    Kemp, J.C., “Piezo-optical birefringence modulators: new use for a long
    known effect,” J. Opt. Sci. Am., Vol. 59, pp. 950-954, 1969.

    Kothiyal, M.P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates,” Opt. Lett., Vol. 9, pp.
    319-321, 1984.

    Lee, S.H., Park, W.S., Yoon, T.H., Lee G.D., and J.C. Kim, “Low
    Cell-Gap Measurement by Rotation of a Wave Retarder,” Jpn. J. Appl.
    Phys., Vol. 41, pp. 379-383, 2002.

    Lien, A. and Takano, H., “Cell gap measurement of filled twisted nematic
    liquid crystal displays by a phase compensation method,” J. Appl. Phys.,
    Vol. 69, pp. 1304-1309, 1991.

    Lo, Y.L. and Yu, C.T., “Optical polarimeter for the absolute measurement of rotation angles using an EO modulator,” OPT., Proceeding II, pp.
    577-579, 2003.

    Lo, Y.L., Lai, C.H., Lin, J.F., and Hsu, P.F., “Simultaneous Absolute Measurements of Principal Angle and Phase Retardation with a New Common-Path Heterodyne Interferometer,” Applied Optics, Vol. 43, No.
    10, pp.2013-2022, 2004.

    Lo, Y.L., Lin, J.F., and Lee, S.Y., “Polariscope for the simultaneous measurements of the principal axis and phase retardation using two phase-locked extractions,” Applied Optics, Vol. 43, pp. 6248-6254, 2004.

    Lo, Y.L. and Yu, T.C., “A polarimetric glucose sensor using a liquid
    crystal polarization modulator driven by a sinusoidal signal,” Opt.
    Comm., Vol. 40, pp.259, 2006.

    Oseen, C.W., “The theory of liquid crystals,” Trans. Faraday Soc., Vol.
    29, pp. 883-899, 1933.

    Rabinovitch, B., March, W.F., and Adams, R.L., “Noninvasive glucose monitoring of the aqueous humor of the Eye: part I. Measurement of very
    small optical rotations,” Diabetes Care, Vol. 5, pp. 254-258, 1982.

    Rosenbluth, A.E. and Bobroff, N., “Optical sources of nonlinearity in heterodyne interferometers,” Pre. Eng., Vol. 12, No. 1, pp. 7-11,1990.

    Su, D.C., Chiu, M.H., and Chen, C.D., “Simple two frequency laser,”
    Prec. Eng., Vol. 18, pp. 161-163, 1996.

    Suits, J.C., “Magneto-optical rotation and ellipticity measurements with a
    spinning analyzer,” Rev. Sci. Instrum., Vol. 42, pp. 19-22, 1971.

    Suzuki, T. and Hioki, R., “Translation of light frequency by moving
    grating,” J. Opt. Soc. Am., Vol. 57, pp. 1551, 1967.

    Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., Vol. 19,
    pp. 435-441, 1980.

    Tang, S.T. and Kwok, H.S., “Transmissive liquid crystal cell parameters
    measurement by spectroscopic ellipsometry,” J. Appl. Phys., Vol.89,
    pp. 80-85, 2001.

    Wickramasingle, H.K., Laser heterodyne probes, Optical Metrology,
    NATOASI series, 1987.

    William, A. Shurcliff., Polarized Light., Cambridge, 1962.

    Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc.,
    Ch.4, 1984.

    Ye, C., “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Optical Engineering, Vol. 34, pp. 3031-3035 1995.

    Yeh, P. and Gu, C., Optics of liquid crystal displays, Wiley, New York,
    p. 9, 2000.

    郭彥珍,邱宗明,李信,激光偏振干涉光路的非線性分析計算,計量
    學報,Vol. 16, No. 4, Oct. 1995.

    游展汶,以旋光外差干涉術測量雙折射晶體之非尋常光及非尋常光折射率,國立交通大學光電工程研究所碩士論文,2000.

    許正治,使用外差干涉儀測量光學常數之研究,國立交通大學光電工程研究所碩士論文,2003.

    下載圖示 校內:2009-07-26公開
    校外:2009-07-26公開
    QR CODE