| 研究生: |
歐陽興葦 Ouyang, Sing-Wei |
|---|---|
| 論文名稱: |
光動力抗菌奈米纖維素塗層技術開發及應用於包裝紙之研究 Development of Photodynamic Antibacterial Cellulose Nanocrystals Coating and its Application in Packaging Paper |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 包裝紙塗層 、奈米纖維素 、功能化 、光動力殺菌 |
| 外文關鍵詞: | paper coating, cellulose nanocrystals, functionalize, photodynamic inactivation |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了使紙張能作為良好之包裝材料以減少塑膠包裝的使用,需開發環保且抗菌之塗層以解決包裝紙之缺點。本實驗將具有良好奈米特性之奈米纖維素(cellulose nanocrystals, CNC)以高碘酸鹽氧化之方式將CNC醛化製作出二醛奈米纖維素(dialdehyde cellulose nanocrystals, DACNC)隨後與光敏劑赤蘚紅(Erythrosine)複合使其具有光動力殺菌(photodynamic inactivation, PDI)之效果,製作出CNC赤蘚紅複合材料(Ery-DACNC) 以達到功能化(functionalize)之目的,最後將此材料以浸塗法並配合逐層(layer by layer)之方式塗佈至牛皮紙(Kraft paper)上,製作出具有多功能塗層之複合塗層紙。
CNC經過醛化後其產量會隨著醛基含量增加而下降,且經由傅立葉轉換紅外線光譜 (Fourier Transform Infrared Spectrometer, FTIR)後確認其具有醛基之結構。與赤蘚紅複合後其FTIR光譜則新出現了羧酸根之特徵峰以及醛基之特徵峰產生減弱證明其利用醛基與赤蘚紅做複合,且複合量隨著赤蘚紅添加量增加而上升。殺菌效果以赤蘚紅添加量為100 mg且濃度為1.5 wt.%時之Ery-DACNC最佳,其在照射綠光30 min後能滅除90%以上之細菌且照射白光60 min後能滅除85%以上之細菌。經過塗佈後之塗層紙其性質隨著Ery-DACNC濃度及塗層數增加,最後選擇以4.5 wt.%之Ery-DACNC逐層塗佈15層做為最佳參數,經過塗層後之複合塗層紙其物理性質相比牛皮紙及PE淋膜紙皆有提升,且照射綠光40 min後能滅除90%以上之細菌而照射白光60 min後能滅除80%以上之細菌。
In this experiment, a new multi-function paper coating material was made in order to enhance the properties of paper to reduce the use of plastic packaging. An excellent natural nanomaterial cellulose nanocrystals (CNC) was used as coating substrate. CNC was functionalized by using periodate oxidation to turn CNC into dialdehyde cellulose nanocrystals (DACNC) and combined with photosensitizer Erythrosine, making photodynamic antibacterial cellulose nanocrystals coating material (Ery-DACNC). Ery-DACNC performed excellent photodynamic inactivation (PDI) ability with both green light and white light LED irradiation. Layer by layer dip coating process was used to coat Ery-DACNC on Kraft paper. After coating on Kraft paper, the Ery-DACNC coated paper performed better physical properties compared to uncoated paper and PE coated paper. The surface PDI ability of Ery-DACNC was also tested, the result showed that Ery-DACNC coated paper could performed excellent with both green light (excitation wavelength) and white light (simulate practical situations) LED irradiation.
[1] P. Cazón, G. Velazquez, J. A. Ramírez, and M. Vázquez, "Polysaccharide-based films and coatings for food packaging: A review," Food Hydrocolloids, vol. 68, pp. 136-148, 2017.
[2] Y. Habibi, L. A. Lucia, and O. J. Rojas, "Cellulose nanocrystals: chemistry, self-assembly, and applications," Chemical reviews, vol. 110, pp. 3479-3500, 2010.
[3] M. J. Kirwan, Handbook of paper and paperboard packaging technology: Wiley Online Library, 2013.
[4] V. K. Rastogi and P. Samyn, "Bio-based coatings for paper applications," Coatings, vol. 5, pp. 887-930, 2015.
[5] A. Piselli, P. Garbagnoli, I. Alfieri, A. Lorenzi, and B. DEL CURTO, "Natural-based coatings for food paper packaging," 2014.
[6] K. Khwaldia, E. Arab‐Tehrany, and S. Desobry, "Biopolymer coatings on paper packaging materials," Comprehensive reviews in food science and food safety, vol. 9, pp. 82-91, 2010.
[7] Y. Ma, P. Liu, C. Si, and Z. Liu, "Chitosan nanoparticles: preparation and application in antibacterial paper," Journal of Macromolecular Science, Part B, vol. 49, pp. 994-1001, 2010.
[8] J. Jung, G. M. Raghavendra, D. Kim, and J. Seo, "One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating," International journal of biological macromolecules, vol. 107, pp. 2285-2290, 2018.
[9] N. A. El-Wakil, E. A. Hassan, R. E. Abou-Zeid, and A. Dufresne, "Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging," Carbohydrate polymers, vol. 124, pp. 337-346, 2015.
[10] E. Amini, M. Azadfallah, M. Layeghi, and R. Talaei-Hassanloui, "Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper," Cellulose, vol. 23, pp. 557-570, 2016.
[11] S. Wang, A. Lu, and L. Zhang, "Recent advances in regenerated cellulose materials," Progress in Polymer Science, vol. 53, pp. 169-206, 2016.
[12] D. Trache, M. H. Hussin, M. M. Haafiz, and V. K. Thakur, "Recent progress in cellulose nanocrystals: sources and production," Nanoscale, vol. 9, pp. 1763-1786, 2017.
[13] X. Xu, F. Liu, L. Jiang, J. Zhu, D. Haagenson, and D. P. Wiesenborn, "Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents," ACS applied materials & interfaces, vol. 5, pp. 2999-3009, 2013.
[14] H. M. Azeredo, M. F. Rosa, and L. H. C. Mattoso, "Nanocellulose in bio-based food packaging applications," Industrial Crops and Products, vol. 97, pp. 664-671, 2017.
[15] S. S. Nair, J. Zhu, Y. Deng, and A. J. Ragauskas, "High performance green barriers based on nanocellulose," Sustainable Chemical Processes, vol. 2, p. 23, 2014.
[16] S. Eyley and W. Thielemans, "Surface modification of cellulose nanocrystals," Nanoscale, vol. 6, pp. 7764-7779, 2014.
[17] S. PÉrez and D. Samain, "Structure and engineering of celluloses," in Advances in carbohydrate chemistry and biochemistry. vol. 64, ed: Elsevier, 2010, pp. 25-116.
[18] P. Bragd, H. Van Bekkum, and A. Besemer, "TEMPO-mediated oxidation of polysaccharides: survey of methods and applications," Topics in Catalysis, vol. 27, pp. 49-66, 2004.
[19] W. F. Bailey, J. M. Bobbitt, and K. B. Wiberg, "Mechanism of the oxidation of alcohols by oxoammonium cations," The Journal of organic chemistry, vol. 72, pp. 4504-4509, 2007.
[20] B. Li, W. Xu, D. Kronlund, A. Määttänen, J. Liu, J.-H. Smått, et al., "Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation," Carbohydrate polymers, vol. 133, pp. 605-612, 2015.
[21] U.-J. Kim, S. Kuga, M. Wada, T. Okano, and T. Kondo, "Periodate oxidation of crystalline cellulose," Biomacromolecules, vol. 1, pp. 488-492, 2000.
[22] C. Bunton and V. Shiner, "321. Periodate oxidation of 1, 2-diols, diketones, and hydroxy-ketones: the use of oxygen-18 as a tracer," Journal of the Chemical Society (Resumed), pp. 1593-1598, 1960.
[23] B. Braun and J. R. Dorgan, "Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers," Biomacromolecules, vol. 10, pp. 334-341, 2009.
[24] L. Jasmani, S. Eyley, R. Wallbridge, and W. Thielemans, "A facile one-pot route to cationic cellulose nanocrystals," Nanoscale, vol. 5, pp. 10207-10211, 2013.
[25] Y. Habibi, A.-L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, and A. Dufresne, "Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization," Journal of Materials Chemistry, vol. 18, pp. 5002-5010, 2008.
[26] H. de la Motte, M. Hasani, H. Brelid, and G. Westman, "Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR," Carbohydrate polymers, vol. 85, pp. 738-746, 2011.
[27] C. Gousse, H. Chanzy, M. Cerrada, and E. Fleury, "Surface silylation of cellulose microfibrils: preparation and rheological properties," Polymer, vol. 45, pp. 1569-1575, 2004.
[28] S. Xu, J. Gu, Y. Luo, and D. Jia, "Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites," Express Polymer Letters, vol. 6, 2012.
[29] C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, and E. Fleury, "Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents," Polymer, vol. 43, pp. 2645-2651, 2002.
[30] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
[31] K. H. Kan, J. Li, K. Wijesekera, and E. D. Cranston, "Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants," Biomacromolecules, vol. 14, pp. 3130-3139, 2013.
[32] J. Yi, Q. Xu, X. Zhang, and H. Zhang, "Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states," Polymer, vol. 49, pp. 4406-4412, 2008.
[33] L. Pranger and R. Tannenbaum, "Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay," Macromolecules, vol. 41, pp. 8682-8687, 2008.
[34] A. Carlmark, E. Larsson, and E. Malmström, "Grafting of cellulose by ring-opening polymerisation–A review," European Polymer Journal, vol. 48, pp. 1646-1659, 2012.
[35] B. Sun, Q. Hou, Z. Liu, and Y. Ni, "Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive," Cellulose, vol. 22, pp. 1135-1146, 2015.
[36] Z. Sabzalian, M. N. Alam, and T. G. van de Ven, "Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers," Cellulose, vol. 21, pp. 1381-1393, 2014.
[37] D. Bhattacharyya, J. Hestekin, P. Brushaber, L. Cullen, L. G. Bachas, and S. Sikdar, "Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity," Journal of Membrane Science, vol. 141, pp. 121-135, 1998.
[38] E. Maekawa and T. Koshijima, "Properties of 2, 3‐dicarboxy cellulose combined with various metallic ions," Journal of Applied Polymer Science, vol. 29, pp. 2289-2297, 1984.
[39] B. Casu, A. Naggi, G. Torri, G. Allegra, S. Meille, A. Cosani, et al., "Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose," Macromolecules, vol. 18, pp. 2762-2767, 1985.
[40] F. C. Tenover, "Mechanisms of antimicrobial resistance in bacteria," The American journal of medicine, vol. 119, pp. S3-S10, 2006.
[41] M. C. McManus, "Mechanisms of bacterial resistance to antimicrobial agents," American Journal of Health-System Pharmacy, vol. 54, pp. 1420-1433, 1997.
[42] A. H. Holmes, L. S. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, et al., "Understanding the mechanisms and drivers of antimicrobial resistance," The Lancet, vol. 387, pp. 176-187, 2016.
[43] O. Raab, "Uber die wirkung fluorescirender stoffe auf infusorien," Z. biol., vol. 39, pp. 524-546, 1900.
[44] J. Moan and Q. Peng, "An outline of the hundred-year history of PDT," Anticancer research, vol. 23, pp. 3591-3600, 2003.
[45] Z. Malik, H. Ladan, and Y. Nitzan, "Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions," Journal of Photochemistry and Photobiology B: Biology, vol. 14, pp. 262-266, 1992.
[46] T. Dai, Y.-Y. Huang, and M. R. Hamblin, "Photodynamic therapy for localized infections—state of the art," Photodiagnosis and photodynamic therapy, vol. 6, pp. 170-188, 2009.
[47] D. M. A. Vera, M. H. Haynes, A. R. Ball, T. Dai, C. Astrakas, M. J. Kelso, et al., "Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes," Photochemistry and photobiology, vol. 88, pp. 499-511, 2012.
[48] T. Maisch, "Resistance in antimicrobial photodynamic inactivation of bacteria," Photochemical & Photobiological Sciences, vol. 14, pp. 1518-1526, 2015.
[49] F. Giuliani, M. Martinelli, A. Cocchi, D. Arbia, L. Fantetti, and G. Roncucci, "In vitro resistance selection studies of RLP068/Cl, a new Zn (II) phthalocyanine suitable for antimicrobial photodynamic therapy," Antimicrobial agents and chemotherapy, vol. 54, pp. 637-642, 2010.
[50] M. Broekgaarden, R. Weijer, T. M. van Gulik, M. R. Hamblin, and M. Heger, "Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies," Cancer and Metastasis Reviews, vol. 34, pp. 643-690, 2015.
[51] M. R. Hamblin, "Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes," Current opinion in microbiology, vol. 33, pp. 67-73, 2016.
[52] C. S. Foote, "Type I and type II mechanisms of photodynamic action," ed: ACS Publications, 1987.
[53] C. S. Foote, "Photosensitized Oxidation and Singlet Oxygen: Consequences in," Free radicals in biology, vol. 2, p. 85, 2012.
[54] S. K. Sharma, P. Mroz, T. Dai, Y. Y. Huang, T. G. S. Denis, and M. R. Hamblin, "Photodynamic therapy for cancer and for infections: what is the difference?," Israel journal of chemistry, vol. 52, pp. 691-705, 2012.
[55] S.-W. Yang, "Study of the Synergy Effect between Erythrosine and Gold Nanoparticles in Photodynamic Inactivation," Master, Department of Mechanical Engineering, National Cheng Kung University, Taiwan.
[56] S. Wood, D. Metcalf, D. Devine, and C. Robinson, "Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms," Journal of antimicrobial Chemotherapy, vol. 57, pp. 680-684, 2006.
[57] N. N. Yassunaka, C. F. de Freitas, B. R. Rabello, P. R. Santos, W. Caetano, N. Hioka, et al., "Photodynamic inactivation mediated by erythrosine and its derivatives on foodborne pathogens and spoilage bacteria," Current microbiology, vol. 71, pp. 243-251, 2015.
[58] A. F. Silva, A. Borges, C. F. Freitas, N. Hioka, J. M. G. Mikcha, and M. Simões, "Antimicrobial photodynamic inactivation mediated by rose bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states," Molecules, vol. 23, p. 2288, 2018.
[59] A. Shrestha, M. R. Hamblin, and A. Kishen, "Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, pp. 491-501, 2014.
[60] J. Tang, J. Sisler, N. Grishkewich, and K. C. Tam, "Functionalization of cellulose nanocrystals for advanced applications," Journal of colloid and interface science, vol. 494, pp. 397-409, 2017.
[61] B. Sun, Q. Hou, Z. He, Z. Liu, and Y. Ni, "Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency," Carbohydrate polymers, vol. 111, pp. 419-424, 2014.
[62] M. Rayner, D. Marku, M. Eriksson, M. Sjöö, P. Dejmek, and M. Wahlgren, "Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 458, pp. 48-62, 2014.
[63] J. Tang, M. F. X. Lee, W. Zhang, B. Zhao, R. M. Berry, and K. C. Tam, "Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals," Biomacromolecules, vol. 15, pp. 3052-3060, 2014.
[64] Z. Hu, H. S. Marway, H. Kasem, R. Pelton, and E. D. Cranston, "Dried and redispersible cellulose nanocrystal Pickering emulsions," ACS Macro Letters, vol. 5, pp. 185-189, 2016.
[65] L. Chen, W. Cao, P. J. Quinlan, R. M. Berry, and K. C. Tam, "Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals," ACS Sustainable Chemistry & Engineering, vol. 3, pp. 978-985, 2015.
[66] Q. Xu, L. Jin, Y. Wang, H. Chen, and M. Qin, "Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper," Cellulose, vol. 26, pp. 1309-1321, 2019.
[67] J. Tang, Y. Song, S. Tanvir, W. A. Anderson, R. M. Berry, and K. C. Tam, "Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent," ACS Sustainable Chemistry & Engineering, vol. 3, pp. 1801-1809, 2015.
[68] D. O. de Castro, J. Bras, A. Gandini, and N. Belgacem, "Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process," Carbohydrate polymers, vol. 137, pp. 1-8, 2016.
[69] P. Calvini, G. Conio, M. Lorenzoni, and E. Pedemonte, "Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology," Cellulose, vol. 11, pp. 99-107, 2004.
[70] M. Krouit, R. Granet, and P. Krausz, "Photobactericidal films from porphyrins grafted to alkylated cellulose–synthesis and bactericidal properties," European polymer journal, vol. 45, pp. 1250-1259, 2009.
[71] K. Conley, M. Whitehead, and T. G. van de Ven, "Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation," Cellulose, vol. 23, pp. 1553-1563, 2016.
[72] S.-N. Yuen, S.-M. Choi, D. L. Phillips, and C.-Y. Ma, "Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides," Food chemistry, vol. 114, pp. 1091-1098, 2009.
[73] M. S. Jahan, A. Saeed, Z. He, and Y. Ni, "Jute as raw material for the preparation of microcrystalline cellulose," Cellulose, vol. 18, pp. 451-459, 2011.
[74] S. M. Keshk, "Homogenous reactions of cellulose from different natural sources," Carbohydrate polymers, vol. 74, pp. 942-945, 2008.
[75] R. de Carvalho Goulart, G. Thedei Jr, S. L. Souza, A. C. Tedesco, and P. Ciancaglini, "Comparative study of methylene blue and erythrosine dyes employed in photodynamic therapy for inactivation of planktonic and biofilm-cultivated Aggregatibacter actinomycetemcomitans," Photomedicine and laser surgery, vol. 28, pp. S-85-S-90, 2010.