| 研究生: |
林大鈞 Lin, Da-Chun |
|---|---|
| 論文名稱: |
巨噬細胞中PPARγ與發炎體活化的交互作用 Interplay between PPARγ and inflammasome activation in macrophages |
| 指導教授: |
蔡曜聲
Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 過氧化增生受體 、NLRP3 發炎體 、白細胞介素-1β 、凋亡蛋白酶-1 |
| 外文關鍵詞: | PPARγ, NLRP3 inflammasome, IL-1β, caspase-1 |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NLRP3發炎體(NLRP3 inflammasome)為一種表達於免疫細胞的聚合蛋白體,負責調控適應性免疫反應。當外來的微生物入侵或接受到死亡訊息時,細胞中的NLRP3、ASC和pro-caspase-1會相互連接形成NLRP3 inflammasome,接著切割caspase-1,促使發炎激素IL-1β釋放到細胞外並造成細胞死亡。因此,在許多發炎相關疾病的過程中,常發現到有不正常IL-1β的產生和發炎體過度活化的現象。過氧化增生受體(Peroxisome proliferator-activated receptors, PPARγ)是一種核激素受體(nuclear receptor protein),負責調控脂肪細胞的分化與醣類的代謝,並且在巨噬細胞中也能夠發現PPARγ的存在。在許多的文獻指出,細胞能藉由PPARγ的活化抑制NF-κB的活化,進一步抑制發炎激素的生成,例如IL-1β。因此我們提出一個假說:PPARγ能夠抑制發炎體的活化。首先,我們在缺失PPARγ的巨噬細胞(PpargL/+)中給予LPS的刺激,我們發現發炎體活化的相關基因IL-1β、caspase-1和NLRP3的表現有明顯的上升。接著,我們利用PPARγ的促進劑Rosiglitazone刺激PPARγ的活化,從結果顯示PPARγ的活化能有效的抑制LPS和nigericin所造成caspase-1 和IL-β活化。並且,我們在PPARγ缺失的巨噬細胞(PpargC/- and PpargL/+)也發現,發炎體的活化程度相較於正常的細胞高,如此更能證明活化的PPARγ能夠抑制LPS和nigericin所造成發炎體的活化。除此之外,我們更發現PPARγ除了能夠抑制nigericin所刺激的發炎體的活化,它也能夠抑制結晶所誘導的發炎體活化。我們建立了一套轉染NLRP3發炎體的系統在HEK293T細胞,在這套人工的系統中,我們除了發現PPARγ的表現能夠抑制IL-1β的產生和發炎體的形成之外,更有趣的是,在免疫螢光染色和免疫沉澱的實驗中,我們發現PPARγ會與NLRP3相互連接,不論是在發炎體活化或不活化的巨噬細胞。在發炎體活化過程中,PPARγ的蛋白表現量有減少的情形。因此,我們進一步地利用NF-kB和proteasome抑制劑,確實能夠減緩在發炎體活化的過程中PPARγ的減少,如此也伴隨著發炎體的活化程度降低。但caspase-1的抑制劑則無法減緩這現象的發生。由上述結果證明,PPARγ是透過與NLRP3連接,進而抑制發炎體的活化。並且,在巨噬細胞發炎體活化的過程中,會造成PPARγ的表現減少。因此,從我們的研究結果發現了一個PPARγ抑制發炎反應的全新的功能,更重要的是,此結果提供了PPARγ促進劑在未來臨床上發炎體相關疾病治療的可行性。
NLRP3 inflammasome, a multiprotein complex consisting of NLRP3, ASC and caspase-1, is expressed in immune cells and is a component for the innate immune system. Activators from microbe, stress and damage signals trigger inflammsome assembly to direct cleavage of caspase-1 for maturation and secretion of IL-1β and cell death. Thus, aberrant IL-1β production and inflammasome activation are important in diseases associated with dysregulated inflammatory responses. PPARγ, a nuclear hormone receptor, plays an important role in adipocyte differentiation and glucose homeostasis. PPARγ is also expressed in macrophages, and inhibits the expression of inflammatory cytokines, including IL-1β, by inhibition of NF-κB activation. Several studies showed an inverse correlation between PPARγ activation and IL-1β production. Thus we hypothesized that PPARγ attenuates inflammasome activation in macrophages. First, we found that expression of inflammasome components, IL-1β, caspase-1 and NLRP3, was increased in PPARγ-defective macrophages in response to LPS. Treatment of PPARγ agonist rosiglitazone attenuated cleavages of caspase-1 and IL-1β in LPS-primed nigericin-stimulated macrophages. Consistently, cleavages of caspase-1 and IL-1β were higher in macrophages from PPARγ-defective mice (PpargC/- and PpargL/+) than wild-type mice. Moreover, PPARγ activation during nigericin stimulation effectively attenuated inflammasome activation. In addition to nigericin, PPARγ activation also attenuated crystal-mediated NLRP3 inflammasome activation. We further set up an artificial NLRP3 inflammasome reconstituted system in HEK293T cells. We found that PPARγ also reduced IL-1β maturation and blocked inflammasome complex formation in reconstituted HEK293T cells. Interestingly, immunofluorescence staining and immunoprecipitaion showed that PPARγ was associated with NLRP3 in both basal and inflammasome activated states. Finally, we found that PPARγ was downregulated during inflammasome activation. Inhibition of NF-κB or proteasome, but not caspase-1, effectively attenuated PPARγ degradation. Prevention of PPARγ from degradation was associated with reduction of inflammasome activation. In conclusion, PPARγ attenuates NLRP3 inflammasome activation in macrophages, partly through its interaction with NLRP3. Upon inflammasome stimulation, PPARγ is then degraded to allow a full inflammasome activation. Our study demonstrates a novel function of PPARγ in attenuation of inflammatory response and provides a candidate for PPARγ agonist in the treatment of inflammasome-associated diseases.
1. Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. 2008. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3:352-363.
2. Chen, G., Shaw, M.H., Kim, Y.G., and Nunez, G. 2009. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365-398.
3. Ye, Z., Lich, J.D., Moore, C.B., Duncan, J.A., Williams, K.L., and Ting, J.P. 2008. ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28:1841-1850.
4. Ting, J.P., Lovering, R.C., Alnemri, E.S., Bertin, J., Boss, J.M., Davis, B.K., Flavell, R.A., Girardin, S.E., Godzik, A., Harton, J.A., et al. 2008. The NLR gene family: a standard nomenclature. Immunity 28:285-287.
5. Martinon, F., Burns, K., and Tschopp, J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417-426.
6. Meylan, E., Tschopp, J., and Karin, M. 2006. Intracellular pattern recognition receptors in the host response. Nature 442:39-44.
7. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768-774.
8. Mariathasan, S., and Monack, D.M. 2007. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31-40.
9. Miao, E.A., Rajan, J.V., and Aderem, A. 2011. Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206-214.
10. Pelegrin, P., and Surprenant, A. 2007. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386-2394.
11. Pelegrin, P., and Surprenant, A. 2006. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071-5082.
12. Compan, V., Baroja-Mazo, A., Lopez-Castejon, G., Gomez, A.I., Martinez, C.M., Angosto, D., Montero, M.T., Herranz, A.S., Bazan, E., Reimers, D., et al. 2012. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37:487-500.
13. Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., and Latz, E. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847-856.
14. Martinon, F. 2010. Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616-619.
15. Munoz-Planillo, R., Franchi, L., Miller, L.S., and Nunez, G. 2009. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183:3942-3948.
16. Ng, J., Hirota, S.A., Gross, O., Li, Y., Ulke-Lemee, A., Potentier, M.S., Schenck, L.P., Vilaysane, A., Seamone, M.E., Feng, H., et al. 2010. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139:542-552, 552 e541-543.
17. Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-TeKippe, E., Taxman, D.J., Guthrie, E.H., Pickles, R.J., and Ting, J.P. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556-565.
18. Carlsson, F., Kim, J., Dumitru, C., Barck, K.H., Carano, R.A., Sun, M., Diehl, L., and Brown, E.J. 2010. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 6:e1000895.
19. Feve, B., and Bastard, J.P. 2009. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5:305-311.
20. Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nunez, G., Schnurr, M., et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357-1361.
21. Vandanmagsar, B., Youm, Y.H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E., Stephens, J.M., and Dixit, V.D. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179-188.
22. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408-415.
23. Jager, J., Gremeaux, T., Cormont, M., Le Marchand-Brustel, Y., and Tanti, J.F. 2007. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148:241-251.
24. Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., et al. 2010. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897-904.
25. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237-241.
26. Stehlik, C., and Dorfleutner, A. 2007. COPs and POPs: modulators of inflammasome activity. J Immunol 179:7993-7998.
27. Dobo, J., Swanson, R., Salvesen, G.S., Olson, S.T., and Gettins, P.G. 2006. Cytokine response modifier a inhibition of initiator caspases results in covalent complex formation and dissociation of the caspase tetramer. J Biol Chem 281:38781-38790.
28. Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787-791.
29. Brodsky, I.E., Palm, N.W., Sadanand, S., Ryndak, M.B., Sutterwala, F.S., Flavell, R.A., Bliska, J.B., and Medzhitov, R. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376-387.
30. Willson, T.M., Lambert, M.H., and Kliewer, S.A. 2001. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341-367.
31. Tontonoz, P., and Spiegelman, B.M. 2008. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289-312.
32. Barroso, I., Gurnell, M., Crowley, V.E., Agostini, M., Schwabe, J.W., Soos, M.A., Maslen, G.L., Williams, T.D., Lewis, H., Schafer, A.J., et al. 1999. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880-883.
33. Wu, L., Yan, C., Czader, M., Foreman, O., Blum, J.S., Kapur, R., and Du, H. 2012. Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119:115-126.
34. Tsai, Y.S., Kim, H.J., Takahashi, N., Kim, H.S., Hagaman, J.R., Kim, J.K., and Maeda, N. 2004. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest 114:240-249.
35. Tsai, Y.S., Tsai, P.J., Jiang, M.J., Chou, T.Y., Pendse, A., Kim, H.S., and Maeda, N. 2009. Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol 23:1787-1798.
36. Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953-12956.
37. Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., Red Eagle, A., Vats, D., Brombacher, F., Ferrante, A.W., et al. 2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116-1120.
38. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J., and Glass, C.K. 1998. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79-82.
39. Jiang, C., Ting, A.T., and Seed, B. 1998. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82-86.
40. Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose, D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. 2005. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759-763.
41. Lee, J.W., Nam-Goong, I.S., Kim, J.G., Yun, C.H., Kim, S.J., Choi, J.I., Kim, Y.I., and Kim, E.S. 2010. Effects of rosiglitazone on inflammation in Otsuka long-evans Tokushima Fatty rats. Korean Diabetes J 34:191-199.
42. Necela, B.M., Su, W., and Thompson, E.A. 2008. Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology 125:344-358.
43. Guilherme, A., Tesz, G.J., Guntur, K.V., and Czech, M.P. 2009. Tumor necrosis factor-alpha induces caspase-mediated cleavage of peroxisome proliferator-activated receptor gamma in adipocytes. J Biol Chem 284:17082-17091.
44. He, F., Doucet, J.A., and Stephens, J.M. 2008. Caspase-mediated degradation of PPARgamma proteins in adipocytes. Obesity (Silver Spring) 16:1735-1741.
45. Lopez-Castejon, G., and Pelegrin, P. 2012. Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin Investig Drugs 21:995-1007.
46. Botsios, C., Sfriso, P., Furlan, A., Punzi, L., and Dinarello, C.A. 2008. Resistant Behcet disease responsive to anakinra. Ann Intern Med 149:284-286.
47. Setoguchi, K., Misaki, Y., Terauchi, Y., Yamauchi, T., Kawahata, K., Kadowaki, T., and Yamamoto, K. 2001. Peroxisome proliferator-activated receptor-gamma haploinsufficiency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. J Clin Invest 108:1667-1675.
48. Clark, R.B., Bishop-Bailey, D., Estrada-Hernandez, T., Hla, T., Puddington, L., and Padula, S.J. 2000. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 164:1364-1371.
49. Gosset, P., Charbonnier, A.S., Delerive, P., Fontaine, J., Staels, B., Pestel, J., Tonnel, A.B., and Trottein, F. 2001. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 31:2857-2865.
50. Thieringer, R., Fenyk-Melody, J.E., Le Grand, C.B., Shelton, B.A., Detmers, P.A., Somers, E.P., Carbin, L., Moller, D.E., Wright, S.D., and Berger, J. 2000. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 164:1046-1054.
51. Li, A.C., Brown, K.K., Silvestre, M.J., Willson, T.M., Palinski, W., and Glass, C.K. 2000. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523-531.
52. Mills, K.H., and Dunne, A. 2009. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med 15:1363-1364.
53. Bauernfeind, F., Bartok, E., Rieger, A., Franchi, L., Nunez, G., and Hornung, V. 2011. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187:613-617.
54. Niess, A.M., Dickhuth, H.H., Northoff, H., and Fehrenbach, E. 1999. Free radicals and oxidative stress in exercise--immunological aspects. Exerc Immunol Rev 5:22-56.
55. Cruz, C.M., Rinna, A., Forman, H.J., Ventura, A.L., Persechini, P.M., and Ojcius, D.M. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871-2879.
56. Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B.T., and Tschopp, J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674-677.
57. Meissner, F., Seger, R.A., Moshous, D., Fischer, A., Reichenbach, J., and Zychlinsky, A. 2010. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116:1570-1573.
58. Johann, A.M., von Knethen, A., Lindemann, D., and Brune, B. 2006. Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death Differ 13:1533-1540.
59. Fujisawa, K., Nishikawa, T., Kukidome, D., Imoto, K., Yamashiro, T., Motoshima, H., Matsumura, T., and Araki, E. 2009. TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis. Biochem Biophys Res Commun 379:43-48.
60. McInerney, E.M., Rose, D.W., Flynn, S.E., Westin, S., Mullen, T.M., Krones, A., Inostroza, J., Torchia, J., Nolte, R.T., Assa-Munt, N., et al. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 12:3357-3368.
61. Renaud, J.P., and Moras, D. 2000. Structural studies on nuclear receptors. Cell Mol Life Sci 57:1748-1769.
62. Wang, R., Huang, W., and Liang, X. 2012. Involvement of mitogen-activated protein kinases and peroxisome proliferator-activated receptor gamma in monosodium urate crystal-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Int J Mol Med 29:877-882.
63. Granowitz, E.V., Porat, R., Mier, J.W., Pribble, J.P., Stiles, D.M., Bloedow, D.C., Catalano, M.A., Wolff, S.M., and Dinarello, C.A. 1992. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine 4:353-360.