簡易檢索 / 詳目顯示

研究生: 蔡明怡
Tsai, Ming-Yi
論文名稱: 白血球Integrin與其配位體在細胞黏著調控之角色
Role of leukocyte integrins and their ligands in regulation of cell adhesion
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 白血球配位體細胞黏著
外文關鍵詞: leukocyte integrins, cell adhesion
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   發炎反應發生時,血管中的白血球會由快速流動、滾動、黏著於內皮細胞,到最後移行(transmigration)至特定部位。這樣的過程在人體免疫功能上,扮演著很重要的角色,且發炎反應即是人體用來抵禦致病原入侵的第一道防線。白血球與內皮細胞間的交互作用,必須依靠多種細胞黏著分子的幫忙,其中包括selectin、integrin與intercellular adhesion molecules。ICAM-1屬於immunoglobulin superfamily,具有五個extracellular Ig-like domains。在發炎反應中,許多刺激(如TNF-α、INF-γ、IL-1等)都可以增強血管內皮細胞ICAM-1分子的表現。ICAM -1最主要可與白血球上LFA-1結合,完成細胞黏著步驟。然而,發炎內皮細胞與白血球黏著、移行的調控機制,仍有許多未知。在此我們利用實驗室之前發現的抗ICAM-1抗體,EN2與I9來幫助我們探討這些問題。首先我們發現,EN2或I9均可促使白且球與內皮細胞之間的黏著。接著我們更進一步的去觀察,發現EN2與I9也會抑制白血球的移行。也就是說,當EN2與I9增強白血球與內皮細胞的黏著,由於緊密黏著的增加,也使得移行的白血球數目減少。由於ICAM-1可利用不同的domain與其配位體結合,於是我們製備六種不同truncated form的ICAM-1,以便幫助我們觀察抗ICAM-1抗體結合的辨識部位。另外,我們也想利用flow chamber建立流動系統,希望可以在一個穩定的狀態下觀察白血球黏著情形,減少adhesion assay清洗步驟的人為操作誤差。

      發炎反應中,另一種相當重要的黏著分子是integrin。根據過去的研究顯示,integrin的活性與其本身蛋白質構造有密切關係。Integrin會利用可逆性的氧化還原反應,來改變結構狀態,以達到活性開關的轉換。目前有許多關於血小板integrin的研究證實,ROS可直接在integrin的cystine-rich domain上進行氧化還原,如此結構的改變會造就integrin活性的變化。而α4 integrin也含有相似的domain,所以我們想知道這類的integrin是否也可藉由ROS的調控,來達到活性變換的效果。依據實驗室之前的研究發現,H2O2可調控VLA-4與VCAM-1的結合。高濃度的H2O2可抑制VLA-4與VCAM-1的結合,但低濃度的H2O2則有增進結合的效果。我們知道,VLA-4與VCAM-1在白血球的滾動上扮演重要角色。所以接下來要用flow chamber從白血球滾動的狀態,來觀察H2O2對VLA-4與VCAM-1結合的影響。最後我們發現,H2O2在高濃度的狀態下,滾動的白血球數目會減少;然而在低濃度的情況下,滾動白血球的數目會增加。確實利用流動測試系統觀察到H2O2濃度的不同,對VLA-4與VCAM-1結合會有不同的影響調控。

     Leukocytes adhere to endothelium then transmigrate through blood vessels and traffic to different tissues. This process is important for host defense mechanisms and inflammatory response. The adhesion between leukocyte and endothelium is mediated by several cell surface receptors, including selectins, integrins, and immunoglobulin (Ig) superfamily cell-adhesion molecules (CAMs). Intercellular adhesion molecule-1 (ICAM-1) is an immunoglobulin (Ig) superfamily molecule which contains five Ig-like domains. Many inflammatory mediators activate endothelial cell expression of ICAM-1, which serves as a ligand for the integrin, LFA-1. The regulation mechanisms of leukocyte adhesion and transmigration in the inflamed endothelium mediated by integrein-Ig superfamily molecule thus are critical for immune responses. We previously prepared two monoclonal antibodies, EN2 and I9, which bind to ICAM-1. We found that human umbilical vein endothelial cells (HUVECs) treated with EN2 or I9 have enhanced adhesion between leukocytes and HUVECs. We also found that EN2 and I9 decrease leukocyte transmigration through HUVEC monolayers. We thus hypothesized that the adhesion ability changed by EN2 or I9 is involved in the regulation of cell transmigraton in inflammatory tissues. Based on the hypothesis that EN2 and I9 may bind to different epitopes on ICAM-1, we prepared six truncated forms of ICAM-1 (ICAM-1 five domains and ICAM-1 lacking domain 1, domain 1-2, domain 1-3, domain 4-5, domain 5) to map the binding sites of EN2 and I9 on ICAM-1. A flow-chamber assay system was established to test the adhesion function of leukocytes which may be modulated by these recombinant ICAM-1 molecules.
     We also investigated the modulation of integrins in inflammation. Recent studies showed that conformational changes cause activation or deactivation of integrins. Reactive oxygen species (ROS) can modulate the integrin activity by reversible redox reaction. We thus tested whether ROS change the adhesion states of leukocytes in flow chamber systems. In line with our previous studies, we found that H2O2 can modulate the interaction between VLA-4 and VCAM-1. We selected wall shear stress 1 dyne/cm2 to mimic normal physiological microvascular environments. In a lower concentration (10M), H2O2 enhanced VLA-4 binding to VCAM-1, while in a higher concentration (250M), H2O2 decreased VLA-4 binding to VCAM-1. These results support the hypothesis that ROS modulate the integrin-Ig superfamily molecule interactions and is critical for leukocyte trafficking in inflammatory tissues.

    目錄 中文摘要••••••••••••••••••••••••••••••••••••••••••••••••••1 英文摘要••••••••••••••••••••••••••••••••••••••••••••••••••3 第一章 緒論••••••••••••••••••••••••••••••••••••••••••••••5 第二章 材料與方法 1.細胞株與培養基的製備•••••••••••••••••••••••••••••••••••12 2. PCR(Polymerase chain reaction)••••••••••••••••••••••••••••14 3. Transformation••••••••••••••••••••••••••••••••••••••••14 4.Transfection•••••••••••••••••••••••••••••••••••••••••••17 5.SDS-PAGE••••••••••••••••••••••••••••••••••••••••••••17 6.Western blot••••••••••••••••••••••••••••••••••••••••••20 7.分離人類臍靜脈細胞••••••••••••••••••••••••••••••••••••21 8.Cellular ELISA assay••••••••••••••••••••••••••••••••••••••23 9.細胞黏著實驗•••••••••••••••••••••••••••••••••••••••••23 10.Transmigration assay••••••••••••••••••••••••••••••••••••24 11.Flow chamber system•••••••••••••••••••••••••••••••••••••25 第三章 結果 第一部分 ICAM-1 ligation在調控白血球與血管內皮細胞間作用所扮演的角色 抗ICAM-1單株抗體:EN2和I9的製備••••••••••••••••••••••••27 抗ICAM-1單株抗體辨識內皮細胞表面ICAM-1分子之鑑定••••••••••••28 抗ICAM-1單株抗體對白血球與內皮細胞黏著之影響••••••••••••••••28 建立觀察白血球黏著情況的流動測試系統••••••••••••••••••••••29 抗ICAM-1單株抗體對白血transmigration之影響•••••••••••••••••••30 偵測單株抗體在ICAM-1分子上的辨識部位•••••••••••••••••••••31 ICAM-1 truncated forms的製備••••••••••••••••••••••••••••••••32 第二部分  ROS在流動測試系統中對VLA-4與VCAM-1間作用的影響 ROS的濃度對VLA-4與VCAM-1結合的影響•••••••••••••••••••••33 流動測試系統中觀察ROS影響VLA-4與VCAM-1結合情形••••••••••34 第四章 討論••••••••••••••••••••••••••••••••••••••••••••••36 參考文獻•••••••••••••••••••••••••••••••••••••••••••••••••42 附圖及附表•••••••••••••••••••••••••••••••••••••••••••••••45 圖表目錄 Fig.1 以抗ICAM-1單株抗體EN2和I9辨視ICAM-1分子•••••••••••••••45 Fig.2 利用EN2 和I9抗體偵測細胞表面表現之ICAM-1分子•••••••••••••46 Fig.3 利用EN2和I9偵測不同細胞受TNF-α刺激後ICAM-1的表現•••••••47 Fig.4 抗ICAM-1單株抗體EN2與I9影響內皮細胞和白血球黏著••••••••••48 Fig.5 Flow chamber流動系統下觀察白血球黏著情形••••••••••••••••••49 Fig.6 統計流動測試系統觀察白血球黏著的結果•••••••••••••••••••••50 Fig.7 培養在polycarbonate通透膜上HUVEC細胞染色結果•••••••••••••••51 Fig.8 測試fMLP對白血球最佳的趨化濃度•••••••••••••••••••••••••52 Fig.9 抗ICAM-1單株抗體刺激內皮細胞影響白血球transmigration••••••••••53 Fig.10 利用PRC放大insert的DNA片段••••••••••••••••••••••••••••54 Fig.11 未受任何刺激下THP-1即表現VLA-4與LFA-1分子•••••••••••••••55 Fig.12 Flow chamber流動系統觀察H2O2影響VLA-4與VCAM-1間作用情況••56 Fig.13 統計流動測試系統觀察H2O2影響VLA-4與VCAM-1間作用結果•••••57 Table.1 設計含有restriction enzyme site的primer••••••••••••••••••••••58

    1. Yuan Liu, Sunil K. Shaw, Shuo Ma,Lin Yang, Francis W. Luscinskas,and Charles A. Parkos. 2004. Regulation of leukocyte transmigration: cell surface interactions and signaling events. J. Immunol. 172:7.

    2. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration:the multistep paradigm. Cell 76:301.

    3. Feng, D., J. A. Nagy, K. Pyne, H. F. Dvorak, and A. M. Dvorak. 1998. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187:903.

    4. Burns, A. R., C. W. Smith, and D. C. Walker. 2003. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83:309.

    5. Chang-Duk Jun, Christopher V. Carman, Sambra D. Redick, Motomu Shimaoka,
    Harold P. Erickson, and Timothy A. Springer. 2001. Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1). J. Biol. Chem. 276:29019.

    6. Francis W. Luscinskas, Ph.D, Michael A. Gimbrone Jr, M.D. 1996.
    Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu. Rev. Medicine. 47:413.

    7. Carlos,T.M. and Harlan,J.M. 2002. Leukocyte-endothelial adhesion molecules. Blood. 84:2068.

    8. Johnson-Leger,C., Aurrand-Lion,M. and Imhof,B.A. 2000. The parting of the endothelium:miracle, or simply a junctional affair? J. Cell Sci. 113:921.

    9. Hynes,R.O. 2002. Integrins:bidirectional, allosteric signaling machines. Cell. 110:673.

    10. Shephard,R.J., Gannon,G., Hay,J.B. and Shek,P.N. 2000. Adhesion molecule expression in acute and chronic exercise. Crit Rev. Immunol. 20:245.

    11. Vestweber,D. 2002. Regulation of endothelial cell contacts during leukocyte extravasation. Curr. Opin. Cell Biol. 14:587.

    12. Hua Cai and David G. Harrison. 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87:840.

    13. Andrea K. Hubbard and Robert Rothlein. 2000. Intercellular adhesion molecule-1(ICAM-1) expression and signaling cascades. Free Radical Biology and Medicine. 28:1379.

    14. Staunton, D. E., Merluzzi, V. J., Rothlien, R., Barton, R., Marlin, S. D., Springer, T. A. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849.

    15. Berendt, A. R., McDowall, A., Craig, A. G., Bates, P. A., Sternberg, M. J. E., Marsh, K., Newbold, C. I., Hogg, N. 1992. The binding site on ICAM-1 for Plasmodium falciparum infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site. Cell 68:71.

    16. Koyasu, S., Tse, A. G., Moingeon, P., Hussey, R. E., Mildonian, A., Hannisian, J., Clayton, L. K., Reinherz, E. L. 1994. Delineation of a T cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Proc. Natl. Acad. Sci. 91:6693.

    17. Gardiner, E. E., D’Souza, S. E. 1999. Sequences within fibrinogen and intercellular adhesion molecule-1 (ICAM-1) modulate signals required for mitogenesis. J. Biol. Chem. 274:11930.

    18. Reilly, P. L., Woska, J. R., Jr., Jeanfavre, D. D., McNally, E., Rothlein, R., and
    Bormann, B.-J. 1995. The native structure of intercellular adhesion molecule-1 (ICAM- 1) is a dimmer correlation with binding to LFA-1. J. Immunol. 155:529.

    19. Miller, J., Knorr, R., Ferrone, M., Houdei, R., Carron, C. P., and Dustin, M. L.
    1995. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J. Exp. Med. 182:1231.

    20. Deborah A. Sawatzky, Paul J. Kingham, Emma Court, Bharathy Kumaravel, Allison D. Fryer, David B. Jacoby, W. Graham McLean, and Richard W. Costello. 2002. Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation. Am J Physiol Lung Cell Mol Physiol. 282:L1279.

    21. Benoit Champagne, Pierre Tremblay, André Cantin, and Yves St. Pierre. 1998. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol. 161: 6398.

    22. Anna Maria Witkowska. 2005. Soluble ICAM-1: A marker of vascular
    inflammation and lifestyle. Cytokine. 31:127.

    23. Paola Chiarugi, Giovambattista Pani, Elisa Giannoni, Letizia Taddei, Renata Colavitti, Giovanni Raugei, Mark Symons, Silvia Borrello, Tommaso Galeotti, and Giampietro Ramponi. 2005. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol. 161:933.

    24. Chuang KP, Tsai WS, Wang YJ, Shieh CC. 2003. Speroxide activates very late antigen-4 on an eosinophil cell line and increase cellular binding to vascular cell adhesion molecule-1. Eur J Immunol. 33:645.

    25. Teresa Laragione, Valentina Bonetto, Filippo Casoni, Tania Massignan, Giancarlo Bianchi, Elisabetta Gianazza, and Pietro Ghezzi. 2003. Redox regulation of surface protein thiols:indentification of integrin α-4 as a molecular target by using redox protomics. Proc. Natl. Acad. Sci.100:14737.

    26. Boxu Yan and Jeffrey W. Smith. 2000. Aredox site involved in integrin activation. J Biol. Chem. 275:39964.

    27. Christopher D. O’Brien, Poay Lim, Jing Sun, and Steven M. Albelda. 2003. PECAM-1–dependent neutrophil transmigration is independent of monolayer PECAM-1 signaling or localization. Blood. 101:2816.

    28. Georg Ostermann, Kim S.C.Weber, Alma Zernecke, Andreas Schröder and Christian Weber. 2002. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelil migration of leukocytes. Nat Immunol. 3:151.

    29. Junichi Takagi, Timothy A. Springer. 2002. Integrin activation and structural rearrangement. Immunol Rev. 186:141.

    下載圖示 校內:立即公開
    校外:2006-01-25公開
    QR CODE