簡易檢索 / 詳目顯示

研究生: 李祐安
Li, Yu-An
論文名稱: 以溶液式製備鋇鈦酸鎳奈米結構於電阻式記憶體之應用
Barium Titanate Nickelate Nanostructured Materials Prepared Using a Solution Process for Resistive Random Access Memory Application
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 92
中文關鍵詞: 雙極性電阻式轉換記憶體奈米柱水熱法
外文關鍵詞: bipolar, resistive, memory, nanorod, hydrothermal method
相關次數: 點閱:49下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究成功使用水熱法成長鋇鈦酸鎳奈米柱應用於非揮發性電阻式記憶體。過程首先採用低溫製程技術在ITO/玻璃基板上製備非晶BTN奈米柱薄膜做為晶種層,使用溶膠凝膠製程可以有效且輕鬆的掌控化學元素,並且薄膜可以擁有更高的氧空缺密度,使其不需要額外的forming電壓。水熱法成長過程利用不同時間以及溫度上的變化,來調變奈米柱的長度以及密度,進而達到提升電性的目標,其中無需任何複雜的製程即可完成,能有效減少製造時間並降低成本效益。我們在本次研究中成功的觀察到在浸泡溫度50°C,時間為72小時後,可以觀察到BTN奈米柱的形成。透過SEM分析可以觀察到奈米柱的形狀為長柱狀,長度約為30um,寬度為600~700nm,密度為3500#/mm2的奈米柱分布。而EDS mapping以及XPS分析也可以證明其奈米柱中元素確實為本實驗材料所組成。
    在奈米柱成長後,大多數的氧空缺會存在於奈米柱的graind boundaries [1][2][3],增加了氧原子在此的快速移動和晶界中的導電率[4],在奈米柱膜層中增強電場,讓氧空缺可以容易的在晶界處遷移[1][4],因此,奈米柱表面變成了氧原子貯存器的重要作用。在本次實驗中,首次以水熱法生長BTN奈米柱成功應用在RRAM,不需要forming電壓下即可以達到開關比達105以上,在開關週期達到90個週期以上,retention也能達到104,並且HRS的變異係數也成功的從76%提升到48%,LRS的變異係數也能維持在12%,相較於傳統BTN應用於RRAM的元件,set和reset電壓也有效的降低且具有較小的分布,而兩者的元件HRS皆由空間限制電流SCLC以及LRS為歐姆機制所控制。

    Barium titanate nickelate (BTN) nanorod (NR)-based resistive random access memory (RRAM) was demonstrated using the hydrothermal method. The prepared BTN NR materials have the advantages of ease of fabrication, low temperature application, ability to grow various materials, and relative cost effectiveness. In addition, the BTN NR-based RRAM displayed highly repeatable, forming-free bipolar resistive switching behavior with an ON/OFF ratio of over 105. The resistive switching behavior may be related to the oxygen vacancies on the surface of the BTN NRs, giving rise to the formation of straight, extensible conducting filaments along each vertically aligned BTN NR. As compared to its BTN thin film counterpart, superior reproducibility was also observed, demonstrating that the nanostructured material provides an effective way to improve memory properties.

    摘要 I Abstract III 誌謝 V Contents VII Figure Captions X Table Captions XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Non-volatile memory categories 7 1.3 Basic definitions of RRAM 8 1.3.1 Resistive switching phenomena 10 1.3.2 Resistive switching mechanism 11 1.3.3 RRAM Issues 12 1.4 Motivation 13 1.5 Organization of the Thesis 17 Chapter 2 Literature Review 18 2.1 The nano-material growth mechanism 18 2.1.1 VS (vapor-solid) method 18 2.1.2 VLS (vapor-liquid-solid) method 18 2.1.3 SLS (solid-liquid-solid) method 19 2.2 Methods used to grow nano-materials 22 2.2.1 Metal organic chemical vapor deposition (MOCVD) 22 2.2.2 The thermal evaporation method 22 2.2.3 Hydrothermal method 23 Chapter 3 Experiment 26 3.1 Sol-gel process 26 3.1.1 Principle of the Sol-gel method 26 3.1.2 Experimental materials 27 3.1.3 Solution fabrication 32 3.2 Fabrication equipment 34 3.2.1 Spin coater 34 3.2.2 Hot plate/Magnetic stirrer 34 3.2.3 Oven 35 3.2.4 Sputtering 35 3.3 Measurement equipment 39 3.3.1 X-ray diffraction (XRD) 39 3.3.2 X-ray photoelectron spectroscopy (XPS) 40 3.3.3 Scanning electron microscope (SEM) 40 3.3.4 Focused ion beam (FIB) 42 3.4 Electrical analysis equipment 43 3.4.1 Current-voltage (I-V) measurement 43 3.4.2 Retention characteristics 44 3.4.3 Endurance characteristics 44 3.4.4 Resistance-Temperature (R-T) Measurement 44 3.5 Experimental procedures 44 3.5.1 Device fabrication of Al/BTN/ITO structures 44 3.5.1.1 Substrate cleaning 45 3.5.1.2 BTN storage media deposition 46 3.5.1.3 Top electrode deposition 46 3.5.2 Device fabrication of the Al/BTN-NRs/ITO structures 48 Chapter 4 Results and Discussion 50 4.1 Physical properties of the BTN thin film and BTN-NRs films 50 4.1.1 Crystal structure analysis 50 4.1.2 Chemical compositional analysis 50 4.1.3 Thickness and surface morphology 51 4.1.3.1 SEM morphology images 51 4.1.3.2 EDX data 51 4.1.3.3 FIB cross section image 52 4.2 Electrical properties of BTN thin film/nanorod RRAM 60 4.2.1 I-V measurement 60 4.2.2 Conduction mechanism 62 4.2.3 Uniformity 63 4.2.4 Endurance 64 4.2.5 Data retention 64 4.2.6 Dependence between pattern size and current 65 4.2.7 Resistance-Temperature characteristics 66 4.3 Comparison 78 4.4 Resistive switching mechanism analysis 79 4.5 Diodes analysis 81 Chapter 5 Conclusions and Future prospects 84 5.1 Conclusions 84 5.2 Future prospects 85 References 86

    [1] C. Y. Huang, Y. T. Ho, C. J. Hung, and T. Y. Tseng, “Compact Ga-Doped ZnO Nanorod Thin Film for Making High-Performance Transparent Resistive Switching Memory,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, pp. 3435-3441, 2014.
    [2] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, and S. Y. Chu, “Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures,” Appl. Phys. Lett., vol. 97, p. 212103, 2010.
    [3] I. C. Yao, D. Y. Lee, T. Y. Tseng, and P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, p. 145201, 2012.
    [4] W. Y. Chang, C. A. Lin, J. H. He, and T. B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Appl. Phys. Lett., vol. 96, p. 242109, 2010.
    [5] R. P. Feynman, “There's plenty of room at the bottom,” Journal of Microelectromechanical Systems, vol.1, pp. 60-66, 1992.
    [6] N. Taniguchi, “On the Basic Concept of 'Nano-Technology,” Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.
    [7] IBM Research: Major Nanoscale Breakthroughs
    [8] R. Gupta and B. Rai, “Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study,” Scientific Reports, vol.7, p. 45292, 2017.
    [9] S. Wang, W. Zhang, X. Yu, C. Liang and Y. Zhang, “Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost,” Scientific Reports, vol.7, p. 40300, 2017.
    [10] N. Liu, K. Huo, M. T. McDowell, J. Zhao and Y. Cui, “Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips,” Scientific Reports, vol.5, p. 10507, 2015.
    [11] L. Xu, Z. Dai, G. Duan, L. Guo, Y. Wang, H. Zhou, Y. Liu, W. Cai, Y. Wang and T. Li “Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes,” Scientific Reports, vol.3, p. 1919, 2013.
    [12] K. Bae, D. Y. Jang, H. J. Choi, D. Kim, J. Hong, B. K. Kim, J. H. Lee, J. W. Son and J. H. Shim “Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells,” Scientific Reports, vol.8, p. 14553, 2017.
    [13] Z. Xiong, H. Lin, F. Liu, P. Xiao, Z. Wu, T. Li and D. Li “Flexible PVDF membranes with exceptional robust superwetting surface for continuous separation of oil/water emulsions,” Scientific Reports, vol.7, p.14099, 2017.
    [14] J. U. Jang, H. C. Park, H. S. Lee, M. S. Khil and S. Y. Kim “Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester,” Scientific Reports, vol.8, p.7659, 2018.
    [15] P. M. Gopinath, A. Ranjani, D. Dhanasekaran, N. Thajuddin, G. Archunan, M. A. Akbarsha, B. Gulyás and P. Padmanabhan “Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time,” Scientific Reports, vol.6, p.34058, 2016.
    [16] M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol.5, pp.161-171, 2005.
    [17] R. Duncan “The dawning era of polymer therapeutics,” Nature Reviews Drug Discovery, vol.2, pp.347-360, 2003.
    [18] Y. Bai, H. Wu, R. Wu, Y. Zhang, N. Deng, Z. Yu and H. Qian “Study of Multi-level Characteristics for 3D Vertical Resistive Switching Memory,” Scientific Reports, vol.4, p. 5780, 2014.
    [19] M. C. Hsieh et al., “Ultra high density 3D via RRAM in pure 28nm CMOS process,” IEDMS, 2013.
    [20] S. Park et al., “Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device,” Nanotechnology, vol. 24, p. 38, 2013.
    [21] Y. Fujisaki, “Current Status of Nonvolatile Semiconductor Memory Technology,” Jpn. J. Appl. Phys., vol. 49, pp. 100001, 2010.
    [22] X. L. Hong et al., “Oxide-based RRAM materials for neuromorphic computing,” J Mater Sci, vol. 53, pp. 8720–8746, 2018.
    [23] N. Raghavan, “Performance and reliability trade-offs for high-j RRAM,” Microelectronics Reliability, vol. 54, pp. 2253–2257, 2014.
    [24] W. Y. Chang et al., “Resistive switching behaviors of ZnO nanorod layers,” APPLIED PHYSICS LETTERS, vol. 96, p.242109, 2010.
    [25] Q. Li, Z. Gong, S. Wang, J. Wang, Y. Zhang, and F. Yun, “Bipolar resistive switching behaviors of ITO nanowire networks,” AIP. Advances, vol. 6, p.025222, 2016.
    [26] C. Y. Wei, S. H. Kao, W. C. Huang, Y. M. Huang, C. K. Yang, F. Adriyanto, and Y. H. Wang., “High-performance pentacene-based thin-film transistors and inverters with solution-processed barium titanate insulators,” IEEE Trans. Electron Devices, vol. 59, pp. 477-483, 2012.
    [27] H. B. Sharma, H. N. K. Sarma, and A. Mansingh, “Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin films,” J. Mater. Sci., vol. 34, pp. 1385-1390, 1999.
    [28] A. Visinoiu, R. Scholz, M. Alexe, and D. Hesse, “Morphology dependence of the dielectric properties of epitaxial BaTiO3 films and epitaxial BaTiO3/SrTiO3 multilayers,” Appl. Phys. A, vol. 80, pp. 229-235, 2005.
    [29] C. J. Lee, K. J. Lee, Y. C. Chang, L. W. Wang, D. W. Chou, and Y. H. Wang, “Barium Zirconate Nickelate as the Gate Dielectric for Low-leakage Current Organic Transistors,” IEEE Trans. Electron Devices, vol. 65, pp. 680-686, 2018.
    [30] C. Y. Huang, C. Y. Huang, T. L. Tsai, C. A. Lin, and T. Y. Tseng, “Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance,” Appl. Phys. Lett., vol. 104, pp. 062901-1–062901-4, 2014.
    [31] Y. Lai, W. Qiu, Z. Zeng, S. Cheng, J. Yu, Q. Zheng, “Resistive Switching of Plasma–Treated Zinc Oxide Nanowires for Resistive Random Access Memory,” Nanomaterials, vol. 6, p. 16, 2016.
    [32] C. Y. Huang, Y. T. Ho, C. J. Hung, and T. Y. Tseng, “Compact Ga-Doped ZnO Nanorod Thin Film for Making High-Performance Transparent Resistive Switching Memory,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, pp. 3435-3441, 2014.
    [33] P. Singh, F. M. Simanjuntak, A. Kumar, and T. Y Tseng, “Resistive switching behavior of Ga doped ZnO-nanorods film conductive bridge random access memory,” Thin Solid Films, vol. 660, pp. 828-833, 2018.
    [34] I. C. Yao, D. Y. Lee, T. Y. Tseng, and P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, pp. 145201-145209, 2012.
    [35] J. Park, S. Lee, J. Lee, and K. Yong, “A Light Incident Angle Switchable ZnO Nanorod Memristor: Reversible Switching Behavior Between Two Non-Volatile Memory Devices,” Adv. Mater., vol. 25, pp. 6423-6429, 2013.
    [36] Y. C. Chang, K. J. Lee, C. J. Lee, L. W. Wang, and Y. H. Wang, “Bipolar Resistive Switching Behavior in Sol-Gel MgTiNiOx Memory Device,” IEEE Journal of the Electron Devices Society, vol. 4, pp. 321-327, 2016.
    [37] K. J. Lee, Y. C. Chang, C. J. Lee, L. W. Wang, D. W. Chou, T. K. Chiang, and Y. H. Wang, “Sol-gel strontium titanate nickelate thin films for flexible nonvolatile memory applications,” IEEE Trans. Electron Devices, vol. 64, pp. 2001-2007, 2017.
    [38] K. J. Lee, Y. C. Chang, C. J. Lee, L. W. Wang, and Y. H. Wang, “Bipolar resistive switching characteristics in flexible Pt/MZT/Al Memory and Ni/NbO2/Ni selector structure,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 518-524, 2018.
    [39] W. T. Wu, J. J. Wu, and J. S. Chen, “Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2616–2621, 2011.
    [40] P. Yang and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J Mater Res, vol.12, pp. 2981-2996, 1997.
    [41] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” App; Phy Lett, vol.4, pp. 89-90, 1964.
    [42] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J Vac Sci Technol B, vol.15, pp. 554-557, 1997.
    [43] A. M. Morales, C. M. Liber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, vol.279, pp. 208-211, 1998.
    [44] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, vol.270, pp. 1791-1794, 1995.
    [45] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, vol.287, pp. 1471-1473, 2000.
    [46] R. A. Laudise, and A. A. Ballman "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide", The Journal of Physical Chemistry, vol. 64, pp.688-691, 1960.
    [47] Nano communication, vol. 22, no. 4.
    [48] W. Lee et al., “Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation,” Nanotechnology, vol.15, p.1441, 2004.
    [49] M. Z. Chen et al., “Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications,” Optical Society of America, vol.21, pp. 29277-29282, 2013.
    [50] M. L. Calzda, R. Sirela, F. Carmona and B. Jimènez, “Investigations of a Diol-based Sol-Gel Process for the Preparation of Lead Titanate Materials,” J. Am. Ceram. Soc., vol. 78, p. 1802, 1995.
    [51] B. Jirgensons and M. E. Straumanis , Coloid Chemistry, MvMillian Co., NEW YORK,1962.
    [52] X-ray diffraction – Bruker D8 Discover, http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover.
    [53] J. Goldstein, Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., Michael, and J. R., “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed.: Springer, 2003.
    [54] S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng, vol. 11, pp. 287-300, 2001.
    [55] W.Wang, G. Dong, L. Wang, Y. Qiu, “Pentacene thin- film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, pp. 414-418, 2008.
    [56] M. Netrvalova, V. Vavrunkova, J. Mullerova, and P. Sutta, “OPTICAL PROPERTIES OF RE-CRYSTALLIZED POLYCRYSTALLINE SILICON THIN FILMS FROM a-Si FILMS DEPOSITED BY ELECTRON BEAM EVAPORATION,” J. Electr. Eng: Elektrotechnicky Cas., vol. 60, pp. 279-282, 2009.
    [57] R. Li , X. Tao and X. Li, “Low temperature, organic-free synthesis of Ba3B6O9(OH)6nanorods and β-BaB2O4 nanospindles,” J. Mater. Chem., vol. 19, pp. 983-987, 2009.
    [58] D. Chu, A. Younis, S. Li, “Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics,” Journal of Physics D: Applied Physics, vol. 45, p. 355306, 2012.
    [59] Y. C. Chang, R. Y. Xue, and Y. H. Wang, “Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, pp. 4090-4097, 2014.
    [60] Q. H. Lu, R. Huang, L. S. Wang, Z. G. Wu, C. Li, Q. Luo, S. Y. Zuo, J. Li, D. L. Peng, G. L. Han, P. X. Yan “Thermal annealing and magnetic anisotropy of NiFe thin films on nþ-Sifor spintronic device applications,” Journal of Magnetism and Magnetic Materials, vol. 394, pp. 253-259, 2015.
    [61] W. Kim, S. I. Park, Z. Zhang, and Simon Wong, “Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM,” IEEE Electron Device Lett., vol. 61, pp. 2158-2163, 2014.
    [62] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, T. Y. Tseng, “Resistive Switching Mechanisms ofV-Doped hboxSrZrO3Memory Films,” IEEE Electron Device Lett., vol. 27, pp. 725-727, 2006
    [63] D. C. Kim et al., “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., vol. 88, p. 202102, 2006.
    [64] A. Rahmati and M. Yousefi, “Well Oriented ZnO Nanorods Array: Negative Resistance and Optical Switching,” Z. Anorg. Allg. Chem., vol. 643, pp. 870-876, 2017.
    [65] P. Singh, F. M. Simanjuntak, A. Kumar, and T. Y Tseng, “Resistive switching behavior of Ga doped ZnO-nanorods film conductive bridge random access memory,” Thin Solid Films, vol. 660, pp. 828-833, 2018.
    [66] M. Xiao, K. P. Musselman, W. W. Duley, and Y. N. Zhou, “Reliable and Low-Power Multilevel Resistive Switching in TiO2 Nanorod Arrays Structured with a TiOx Seed Layer,” Appl. Mater. Interfaces, vol. 9, pp. 4808-4817, 2017.
    [67] S. Park, J. H. Lee, H. D. Kim, S. M. Hong, H. M. An, and T.G. Kim, “Resistive switching characteristics of sol–gel based ZnO nanorods fabricated on flexible substrates,” Phys. Status Solidi, vol. 7, pp. 493-496, 2013.
    [68] M. Xiao, K. P. Musselman, W. W. Duley, N. Y. Zhou, “Resistive Switching Memory of TiO2 Nanowire Networks Grown on Ti Foil by a Single Hydrothermal Method,” Nano-Micro Lett, vol. 10, pp. 9-15, 2017.
    [69] A. Younis, D. Chu, and S. Li, “Tuneable resistive switching characteristics of In2O3 nanorods array via Co doping,” The Royal Society of Chemistry, vol. 3, pp. 13422-13428, 2013.
    [70] C. Y. Huang, Y. T. Ho, C. J. Hung, and T. Y. Tseng, “Compact Ga-Doped ZnO Nanorod Thin Film for Making High-Performance Transparent Resistive Switching Memory,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, pp. 3435-3441, 2014.
    [71] C. H. Huang, T. S. Chou, J. S. Huang, S. M. Lin, and Y. L. Chueh, “Self-Selecting Resistive Switching Scheme Using TiO2 Nanorod Arrays,” Scientific Reports, vol. 7, p. 2066, 2017.
    [72] C. Y. Huang, Y. T. Ho, C. J. Hung, and T. Y. Tseng, “Compact Ga-Doped ZnO Nanorod Thin Film for Making High-Performance Transparent Resistive Switching Memory,” IEEE TR. ON ELECTRON DEVICES, vol. 61, pp. 3435-3441, 2014.
    [73] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, and S. Y. Chu, “Electrical bistability in hybrid ZnO nanorod/ polymethylmethacrylate heterostructures,” Appl. Phys. Lett., vol. 97, p. 212103, 2010.
    [74] I. C. Yao, D. Y. Lee, T. Y. Tseng, and P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, p. 145201, 2012.
    [75] W. Y. Chang, C. A. Lin, J. H. He, and T. B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Appl. Phys. Lett., vol. 96, p. 242109, 2010.
    [76] X. Chen, K. Y. Wong, C. A. Yuan and G. Zhang, “Nanowire-based gas sensors,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 177, pp.178-195, 2013.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE