簡易檢索 / 詳目顯示

研究生: 劉宜華
Liu, I-Hua
論文名稱: 鎳鈦矯正線在應力狀態下腐蝕性質之研究
The effect of stress on the corrosion behavior of NiTi wires
指導教授: 李澤民
Lee, Tzer-Min
張川陽
Chang, Chuan-Yang
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 孔蝕鎳鈦矯正線腐蝕應力氧化膜離子釋出
外文關鍵詞: NiTi orthodontic wires, pitting, corrosion, oxygen film, stress, ion release
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    臨床上,鎳鈦矯正線長時間於應力狀態使用在口腔環境中,口腔環境的複雜與多變性對其腐蝕性質影響值得被考慮。關於評估鎳鈦矯正線在有、無應力應變存在時對於腐蝕性質的影響,鮮少有報告提出。本實驗目的在研究市售鎳鈦矯正線於應力狀態下,模擬口腔環境不同酸鹼值的腐蝕性質。
    本實驗利用循環動電位極化法(cyclic potentiodynamic polarization test)分析兩種市售0.016英吋鎳鈦矯正圓線(Nitinol and Sentalloy),在有、無應力(3mm 位移以及沒有位移)情況下,於恆溫37度、兩種不同酸性度(pH 5及pH 2)的人工唾液中的耐蝕性質,並與不鏽鋼矯正線比較之;之後,再利用電子顯微鏡觀察表面型態的改變。為了觀察表面氧化膜在有、無應力情況下改變的狀況,經過靜電位測試(potentiostatic test)後,藉由歐傑電子光譜儀(AES)進行鎳鈦矯正線表面元素的縱深分析。並且利用感應耦合電漿質譜分析儀(ICP-MS)測量鎳鈦矯正線在有、無應力下經過不同浸泡時間(1、3、7 及14天)的鎳離子釋出量。
    實驗結果顯示在進行完循環動電位測試後,應力對於此兩種鎳鈦線的各項腐蝕參數在pH 5及pH 2的人工唾液中有負面的影響,特別是在鈍化區的電流密度有顯著的增加。同時注意到在電子顯微鏡的觀察中發現到不論是在pH 5或pH 2的人工唾液中,鎳鈦矯正線在受力下皆有局部腐蝕增加的現象。更進一步而言,表面氧化膜的縱深分析顯示在應力情況下氧化膜變的較薄,意味鈍化膜的保護功能有變差的傾向。此外,在浸泡實驗中於應力的狀態下鎳離子在第1天就可被偵測到,且隨著浸泡時間增加,鎳離子釋出量有上升趨勢;且在pH 2較pH 5的人工唾液有較高的鎳離子釋出量。因此,應力及酸性度可能導致存在鎳鈦合金上表面上保護性的鈍化膜的破壞進而產生孔蝕的現象。

    In clinic, the Ni-Ti orthodontic wires are used under loading condition in oral environment for a long time. The corrosion behavior of NiTi wires that could be affected by complexity and variety of oral environment should be considered. The evaluation of the effect of corrosion behavior of Ni-Ti orthodontic wires with the presence or absence of stress is rarely reported. The aim of this study was to investigate corrosion behavior of commercial Ni-Ti orthodontic wires in stimulated oral environment at the different acidities under stress condition.
    In this study the corrosion resistance of the two different commercial .016” round NiTi wires(Nitinol and Sentalloy)in two acidities(pH 5 and pH 2)of the artificial saliva, 37 ℃ with and without deformation(3 mm and no displacement)condition were evaluated by the cyclic potentiodynamic tests and were compared to the stainless steel wire, then the change of surface morphology was observed by SEM. To observe if the superficial oxygen film was changed or not with or without stress, the depth profile of the NiTi wires was analyzed with AES after the potentiostatic test. The amounts of Ni ion release of NiTi wires with or without stress during various immersion test periods(1,3 ,7 and 14 days)were calculated by ICP-MS.
    The results showed that the stress had a negative effect on the various corrosion parameters of the two NiTi wires in the artificial saliva solution with two pH value after potentiodynamic test, especially in the current density of passive range with significant increasing. It was also noticed that a localized corrosion phenomenon of NiTi orthodontic wires under loading in the either pH 5 or pH 2 artificial saliva by the SEM examination. Furthermore, the oxygen film of wires became thinner under stress condition by the depth profile analysis of superficial oxygen film that implied the protective function of the passive film becoming poor. Besides, the Ni ion could be detected at the first day of the immersion test under stress condition, and the amount of Ni ion release had increasing tendency following the immersion time increasing. The more amount of Ni ion release under pH 2 than that under pH 5 artificial saliva. Therefore, the stress and acidity could evoke the breakdown of the protective passiviation layer that normally exists on the surface of NiTi alloy, and lead to pitting corrosion.

    目錄 中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2-1 腐蝕的定義 4 2-2 腐蝕形態 4 2-3 腐蝕速率之測試 4 2-4 循環動電位極化曲線 5 2-5 鎳鈦合金耐蝕性質之文獻回顧 5 第三章 實驗材料與研究方法 8 3-1 實驗流程圖 8 3-2 實驗材料 8 3-3 實驗溶液備製 8 3-4 夾具設計 8 3-5 機械性質分析 9 3-6 極化循環動電位測試 9 3-6-1 試片備製 9 3-6-2 循環動電位極化參數測量 9 3-6-3 表面型態觀察 10 3-7 靜電位測試 11 3-7-1 氧化膜性質分析 11 3-8 浸泡測試 11 3-8-1 試片備製 11 3-8-2 離子濃度分析 12 第四章 結果 13 4-1 機械性質分析 13 4-2 極化循環動電位測試 13 4-2-1 動電位極化性質 13 4-2-2 表面型態觀察 15 4-3 AES元素縱深分佈結果 15 4-4 浸泡測試 16 4-4-1 鎳離子釋出量分析 16 第五章 討論 18 5-1 循環動電位測試 18 5-1-1 鎳鈦線 vs. 不鏽鋼線 18 5-1-2 受力對鎳鈦線耐蝕性質之影響 19 5-2 浸泡實驗 21 第六章 結論 24 參考文獻 25 圖目錄 圖1 腐蝕的型態............................................................................................31 圖2 實驗流程圖............................................................................................32 圖3 臨床上矯正線置入矯正器中受力的型態............................................33 圖4 夾具照片................................................................................................34 圖5 犬齒矯正托架遠心端到第二小臼齒矯正托架近心端的距離...........34 圖6 三點彎曲測試實驗裝置。圖(A) 遠觀;圖(B)近觀...........................35 圖7 恆電位儀................................................................................................36 圖8 極化曲線測試的電解槽裝置................................................................37 圖9 極化曲線掃瞄過程................................................................................38 圖10 浸泡實驗的受力容器設計。圖(A)受力前;圖(B)受力後...............39 圖11 Nitinol及Sentalloy鎳鈦矯正線受力形變曲線圖。圖(A) 0.016” Nitinol鎳鈦矯正線;圖(B) 0.016” Sentalloy鎳鈦矯正線.............................40 圖12 Nitinol 鎳鈦線在pH 5人工唾液中未受力及受力的極化曲線圖....41 圖13 Sentalloy 鎳鈦線在pH 5人工唾液中未受力及受力的極化曲線....42 圖14不鏽鋼線在pH 5人工唾液中未受力及受力的極化曲線圖..............43 圖15 Nitinol 鎳鈦線在pH 2人工唾液中未受力及受力的極化曲線圖....44 圖16 Sentalloy 鎳鈦線在pH 2人工唾液中未受力及受力的極化曲圖....45 圖17不鏽鋼線在pH 2人工唾液中未受力及受力的極化曲線圖..............46 圖18 Nitinol鎳鈦線經循環動電位試驗前、後表面電子顯微鏡圖形.......47 圖19 Sentalloy鎳鈦線經循環動電位試驗前、後表面電子顯微鏡圖形...48 圖20不鏽鋼矯正線經循環動電位試驗前、後表面電子顯微鏡圖形......49 圖21 Nitinol鎳鈦線經循環動電位試驗後表面電子顯微鏡圖形...............50 圖22 Sentalloy鎳鈦線經循環動電位試驗後表面電子顯微鏡圖形...........51 圖23不鏽鋼矯正線經循環動電位試驗後表面電子顯微鏡圖形..............52 圖24 Nitinol鎳鈦矯正線在pH 2人工唾液中未受力情形下表面AES全光譜圖形, sputtering 10分鐘.......................................................................53 圖25 Sentalloy鎳鈦矯正線在pH 2人工唾液中未受力情形下表面AES全光譜圖形, sputtering 10分鐘...................................................................54 圖26 Nitinol鎳鈦線於pH 5人工唾液中氧化膜表層成份元素縱深分佈圖 .........................................................................................................................55 圖27 Nitinol鎳鈦線於pH 2人工唾液中氧化膜表層成份元素縱深分佈圖.........................................................................................................................56 圖28 Sentalloy鎳鈦線於pH 5人工唾液中氧化膜表層成份元素縱深分佈圖...............................................................................................................57 圖29 Sentalloy鎳鈦線於pH 2人工唾液中氧化膜表層成份元素縱深分佈圖...............................................................................................................58 圖30 Nitinol 鎳鈦線浸泡在pH 5及pH 2的人工唾液中1、3、7以及14天後鎳離子釋放量...............................................................................59 圖31 Sentalloy 鎳鈦線浸泡在pH 5及pH 2的人工唾液中1、3、7以及14天後鎳離子釋放量...............................................................................60 圖32鎳鈦線與不鏽鋼線在pH 5人工唾液中靜置一小時電壓。圖(A)未受力時;圖(B)受力時 61 圖33鎳鈦矯正線受到彎曲力量形變之示意圖...........................................62 表目錄 表1鎳鈦矯正線及不鏽鋼矯正線組成(wt%)與廠牌...................................63 表2改良式Fusayama人工唾液組成成分....................................................64 表3 0.016” Nitinol及Sentalloy矯正線受力與形變關係表..........................65 表4 Nitinol 在極化動電位測試後的各項腐蝕參數...................................66 表5 Sentalloy在極化動電位測試後的各項腐蝕參數.................................67 表6 Stainless steel 在極化動電位測試後的各項腐蝕參數........................68 表7 Nitinol及Sentalloy鎳鈦線氧訊號的縱深分析表..................................69 表8 Nitinol及Sentalloy鎳鈦線在浸泡試驗中鎳離子釋出量......................70

    [1] Castleman LS, Motzkin SM, Alicandri FP, Bonawit VL.
    Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res 1976;10(5):695-731.
    [2] Andreasen G. A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31 degrees C. and 45 degrees C. Am J Orthod 1980;78(5):528-37.
    [3] Duerig TW, Pelton AR, Stockel D. The utility of superelasticity in medicine. Biomed Mater Eng 1996;6(4):255-66.
    [4] Lu SB. Prospects for the clinical uses of shape-memory nitinol alloy in surgery. Zhonghua Wai Ke Za Zhi 1993;31(5):259.
    [5] Sanders JO, Sanders AE, More R, Ashman RB. A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine 1993;18(12):1640-6.
    [6] Andreasen GF, Brady PR. A use hypothesis for 55 Nitinol wire for orthodontics. Angle Orthod 1972;42(2):172-7.
    [7] Imfeld T. Evaluation of the carcinogenicity of confectionery by intra-oral wire-telemetry. SSO Schweiz Monatsschr Zahnheilkd 1977;87(5):437-64.
    [8] Barret RD, Bishara SE, Quinn JK.Biodegradation of orthodontic appliance. Part I. Biodegradation of nickel and chromium in vitro. American Journal of Orthodontics and Dentofacial Orthodontics 1993;103:243-250.
    [9] Putters JL, Kaulesar Sukul DM, de Zeeuw GR, Bijma A, Besselink PA. Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation. Eur Surg Res 1992;24(6):378-82.
    [10] Gawkrodger DJ. Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermatitis 1993;28(5):257-9.
    [11] Peltonen L. Nickel sensitivity in the general population. Contact Dermatitis 1979;5(1):27-32
    [12] Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 1997;35(4):451-7.
    [13] Wever DJ, Veldhuizen AG, Sanders MM, Schakenard M, van Horn JR. Cytoxicity, allergic and genotoxic activity of a nickel-titanium alloy. Bomaterials 1997;18:115-20
    [14] Shabalovskaya SA. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 1996;6(4):267-89.
    [15] Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DR, van Horn JR. Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 1998;19(7-9):761-9.
    [16] Rondelli G, Vicentini B. Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires. Biomaterials 1999;20(8):785-92.
    [17] Kim H, Johnson JW. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 1999;69(1):39-44.
    [18] Edie JW, Andreasen GF, Zaytoun MP. Surface corrosion of nitinol and stainless steel under clinical conditions. Angle Orthod 1981;51(4):319-24.
    [19] Rondelli G, Vicentini B. Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 2000;51(1):47-54.
    [20] Huang HH. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res A 2003;66(4):829-39.
    [21] Gilbert JL, Zarka L, Chang E, Thomas CH. The reduction half cell and cell response to polarized titanium surfaces. J Biomed Mater Res 1998;42:321-330.
    [22] 楊仁聰,腐蝕電化學實驗,材料基礎實驗[二]
    [23] Denny A. Jones, ”Principle and prevention of corrosion”, Maxwell Macmillan, New York, p1-39 1992
    [24] 柯文賢,腐蝕及其防制,全華科技圖書有限公司,台灣, 1994
    [25] Mars G. Fontana, “ Corrosion Engineering, 3rd ed”, McGraw-Hill, USA, 1986
    [26] 吳溪煌,田福助,電化學原理與運用,新科技書局,台灣, 2001
    [27] Allen J. Bard & Lamy R. Faulkner, “ Electrochemical Methods: Fundamentals & Applications 2nd ed”, Wiley 2001.
    [28] Syrett BC. The application of electrochemical techniques to the study of corrosion of metallic implant.Electrochemical Techinques for Corrosion, R.Baboian, ed., NACE, Houston, Texas, USA. 1997. pp.93-100.
    [29] Syrett BC, Wing SS. Pitting Resistance of new and conventional orthopedic implant materials-effect of metallurgical condition. Corrosion 1972;34(4):138-145
    [30] Wilde BE. A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloy in sea water. Corrosion 1972; 28(8):283-291
    [31] Greener EH, Harcourt JK, Lautenschlager EP. Material Science in Dentistry, The Williams & Wilkins Co., Baltimore. 1972. p352.
    [32] Koike M, Fujii H. The corrosion resistance of pure titanium in organic acids. Biomaterials 2001;22(21):2931-6.
    [33] McCabe JF, editor. “Applied dental materials. 8th ed”, London: Butler&Tanner Ltd., 1990.p1-28
    [34] Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 1996;17(20):2003-8.
    [35] Sarkar NK, Redmond W, Schwaninger B, Goldberg AJ. The chloride
    corrosion behaviour of four orthodontic wires. J Oral Rehabil 1983;10(2):121-8.
    [36] Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of Ni-Ti shape memory alloy. Biomaterials 2002; 23(3):639-44.
    [37] Cui ZD, Man HC, Yang XJ. The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloy in Hanks’ solution. Surface & Coatings Technology 2005;192:327-353
    [38] Thierry B, Tabrizian M, Trepanier C, Savadogo O, Yahia L. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J Biomed Mater Res 2000;51(4):685-93.
    [39] Widu F, Drescher D, Junker R, Bourauel C. Corrosion and biocompatibility of orthodontic wires. J Mater Sci Mater Med 1999;10(5):275-81.
    [40] Mayer JM, Nally JN. Influence of artificial saliva on the corrosion of dental alloys. J Dent Res 1975;54:678.
    [41] Tonner RI, Waters NE. The characteristics of super-elastic Ni-Ti wires in three-point bending. Part I: The effect of temperature. Eur J Orthod 1994;16(5):409-19.
    [42] Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 1986;90(1):1-10.
    [43] Segner D, Ibe D. Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod 1995;17(5):395-402.
    [44] Wisbey A, Gregson PJ, Peter LM, Tuke M. Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterals 1991;12:470-3
    [45] 邱毓蕙,鎳鈦及不銹鋼矯正線在模擬口腔環境中耐蝕性質之研究,私立中山醫學大學碩士論文,2002
    [46] Huang HH. Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res 2005 74A:629-639
    [47] Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Hoffman M et al. Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res Appl Biomater 1999;48:488-495
    [48] Flyvholm MA, Nielsen GD, Andersen A. Nickel content of blood and estimation of dietary intake. Z Lebensm Unters Forsch 1984;179:427-431
    [49] Sunderman FW, Hopfer SM, Sweeny KR, Marcus AH, Most BM, Creason J. Nickel absorption and kinetics in human volunteers. Proc Soc Exp Biol Med 1989; 191:5-11
    [50] Merrit K, Brown SA. Distribution of cobalt chromium wear and corrosion products and biologic reaction. Clin Orthop Rel Res 1996;329S:S233-S243
    [51] Tan L, Crone WC. Surface characterization of NiTi modified by plasma source ion implantation. Acta Materialia 2002; 50:4449-4460

    下載圖示 校內:2016-08-29公開
    校外:2016-08-29公開
    QR CODE