| 研究生: |
方信喬 Fang, Hsin-Chiao |
|---|---|
| 論文名稱: |
電子顯微鏡研究矽太陽能電池背電極之形成與微觀結構 Microscopy Study of Contact Formation and Microstructure on the Backside of Si Solar Cells |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 矽太陽能電池 、背部表面電場 、穿透式電子顯微鏡 、二次電子對比 |
| 外文關鍵詞: | Si Solar Cell, back surface field (BSF), transmission electron microscopy (TEM), secondary electron contrast |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用掃描式顯微鏡(SEM)與穿透式電子顯微鏡(TEM)探討太陽能電池背部電極的微觀結構,並研究製程上的變數對於微觀結構與電性的影響。另一方面,SEM中的二次電子(secondary electron, SE),對於試片的摻雜濃度是非常靈敏的,因此本研究同時發展利用二次電子的影像對比來觀察背部表面電場(back surface field, BSF)的技術。
本論文依研究主題可區分為三大部分。第一部分,吾人以升溫速度做為變數來製作Al網印(screen-printed)太陽能電池,並利用電子顯微鏡來研究背部表面織構(texture)對於合金過程及電性的影響。SEM及TEM的分析結果顯示,較慢的升溫速度(20 and 40 oC/s)會造成不均勻的BSF;而且Al-Si合金/Si基材的界面有表面呈現(111)平面的Si-rich凸起物(extrusion)形成,導致較低的開路電壓(Voc)。本研究發現,Si-rich凸起物的形成主要與導電膠中Al粉的顆粒大小不同有關;並且藉由增加升溫速度,可改善因為表面織構所造成的背部電極品質劣化的現象。
第二部分,吾人以帶狀爐來製作Al網印太陽能電池,並研究導電膠內小顆粒Al的含量對於合金過程及電性的影響。SEM及TEM的分析結果顯示,導電膠中缺少小顆粒Al會造成不均勻的BSF、(111)平面的Al-rich凸起物在Al-Si合金/Si基材的界面形成、以及有未融化的Si-rich rod存在於Al-Si合金層,這些都會造成較低的開路電壓(Voc)、短路電流密度(Jsc)與填充因子(FF)。因此,可藉由增加小顆粒Al的含量來改善BSF與Al-Si合金層的品質。在我們使用的導電膠中,27 wt%的小顆粒Al含量呈現最好的電極品質,當添加量大於27 wt%時就會造成晶粒較小的多晶Al-Si合金形成,而且Al-Si合金層會很容易從fired-Al脫落。
第三部分,吾人分析商業用太陽能電池之背部結構,並利用SEM中二次電子影像的對比來觀察BSF layer。SEM及TEM的分析結果顯示,此試片BSF layer的厚度較薄、 p-p+的界面不均勻、以及在Al-Si合金/Si基材界面有Al-rich凸起物的存在。這些現象表示此太陽能電池的背部結構還有改進的空間。以SEM之二次電子影像判讀,選擇性蝕刻會造BSF layer的厚度增加,而且產生的厚度判讀誤差約為15%。然而,二次電子影像的對比強度顯示,在BSF layer中接近BSF/Al-Si合金界面的摻雜濃度比p-type Si低,與Al-Si二元相圖的預測不相符。這是因為BSF與Al-Si合金的界面形成內部電場,使得電子往金屬飄移,因此二次電子的強度才會在BSF與Al-Si合金層的接面減弱。
This dissertation explores the microstructure on the backside contact of Si solar cells by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of experimental parameters on microstructure and solar cell performance are investigated. In addition, secondary electron (SE) generation is very sensitive to the dopant levels, which is developed to delineate the junction profile of back surface field (BSF) layer.
The main content of this dissertation can be divided into three parts. First, Al screen-printed Si solar cells are fabricated with various ramp-up rates during co-firing, and the impact of the textured back surface on the alloying process in relation to solar cell performance is investigated. SEM and TEM analyses show that slow ramp-up rates of 20 and 40°C/s would cause a nonuniform BSF layer and the presence of Si-rich extrusions at the Al–Si alloy/Si interface with faceting along (111) planes of Si, which results in a lower open-circuit voltage (Voc). The formation mechanism of the Si-rich extrusions is proposed to be related to the packing of nonuniform Al powder size distribution in the paste, and the degradation of the back contact formation by the textures could be avoided by optimizing the ramp-up rate.
Secondly, Al screen printed Si solar cells are fabricated in a belt system, and the impact of the fine Al particle content in the Al paste on the alloying process in relation to solar cell performance is investigated. SEM and TEM analyses show that a lack of fine Al particles in the Al paste causes nonuniform BSF, Al-rich extrusions at the Al–Si alloy/Si interface with faceting along the (111) planes of Al, and unmelted Si-rich rods in the Al–Si alloy layer after alloying. These result in lower Voc, short-circuit current density (Jsc), and fill factor (FF). The quality of the BSF and the Al–Si alloy layer could thus be improved by optimizing the fine Al particle content in the Al paste. Of the four pastes with different fine Al particle contents prepared for comparison, the content of 27 wt % renders the best contact quality, whereas an even higher content would cause a finer-grained polycrystalline Al–Si alloy to form and the fired Al layer to peel off from the Al–Si alloy layer.
In the third part, the microstructure on the backside contact of commercial Si solar cells and delineated the junction profile of back surface field (BSF) layer by using secondary electron (SE) image in the SEM are investigated. SEM and TEM analyses show that some features on the backside contact including nonuniform BSF, thin BSF thickness, and Al-rich extrusions at the Al–Si alloy/Si interface indicate the optimization of microstructure for commercial Si solar cells is still underway. In SEM analysis, in comparison with the imaging with SE imaging, the BSF thickness tends to be overestimated by 15% for the sample under dopant selective etching. Moreover, the projected intensity line profiles can be related to the doping concentration variations within a BSF layer. However, the results show that Al concentration in p-Si substrate is even higher than that in the BSF layer near the BSF/Al-Si alloy interface. This is not consistent with the theory from the Al-Si binary phase diagram. The mechanism of reduction of SE contrast at the BSF/Al-Si alloy interface is proposed to be related to the existence of an electric field between BSF layer and Al-Si alloy layer, which tends to push the electrons into the metal and reduces the SE emission at the interface.
參考文獻
1. 楊素華、蔡泰成,“太陽能電池", 科學發展, 390, 51(2005).
2. G. R. Davis, Sci. Amer., 263, 21(1990).
3. K. N. Amulya and J. Goldemberg, Sci. Amer., 263, 63 (1990).
4. W. Hoagland, Sci. Amer., 273, 170 (1995).
5. 莊嘉琛,“太陽能工程-太陽能電池篇", 全華出版社 (1997).
6. 林坤立,“單晶矽太陽能電池製程及其頻譜響應之研究", 雲林科技大學電子工程研究所, 碩士論文 (2004).
7. 蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起", 物理雙月刊, 27, 701 (2005).
8. 曾俊凱,“氮化鎵銦系列材料應用於再生能源-太陽能電池&光電化學水解氫氣元件之研究", 國立成功大學光電科學與工程研究所大學電子工程研究所, 碩士論文 (2009).
9. A. W. Blakers and M. A. Green, Appl. Phys. Lett., 48, 215 (1986).
10. H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, IEEE Trans. Electron Devices, 39, 1100 (1992).
11. A. Rohatgi, V. Yelundur, J. Jeong, A. Ristow, M. Hilali, B. Damiani, V. Kumar, and P. K. Basu, Proceeding of the 11th International workshop on the Physics of Semiconductor Devices, Delhi, India, p. 73 (2001).
12. U. Gangopadhyay, S. K. Dhungel, K. Kim, U. Manna, P. K. Basu, H. J. Kim, B. Karunagaran, K. S. Lee, J. S. Yoo, and J. Yi, Semicond. Sci. Technol., 20, 938 (2005).
13. D. S. Kim, V. Yelundur, K. Nakayashiki, B. Rounsaville, V. Meemongkolkiat, A. M. Gabor, and A. Rohatgi, Sol. Energy Mater. Sol. Cells, 90, 1227 (2006).
14. 鄭名山,“太陽能發電簡介", 物理雙月刊, 29, 707 (2007).
15. A. Kaminski, B. Vandelle, A. Fave, J. P. Boyeaux, L. Q. Nam, R. Monna, D. Sarti, A. Laugier, Sol. Energy Mater. Sol. Cells, 72, 373 (2002).
16. S. Narasimha, A. Rohatgi, and A. W. Weeber, IEEE Trans. Electron Devices, 46, 1363 (1999).
17. J. G. Fossum, IEEE Trans. Electron Devices, ED-24, 322 (1977).
18. J. D. Alamo, J. Eguren, and A. Luque, Solid-State Electron., 24, 415 (1981).
19. M. Bähr, S. Dauwe, A. Lawerenz, and L. Mittelstädt, Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, p. 926 (2005).
20. V. Meemongkolkiat, K. Nakayashiki, D. S. Kim, R. Kopecek, and A. Rohatgi, J. Electrochem. Soc., 153, G53 (2006).
21. J. A. Amick, F. J. Bottari, and J. I. Hanoka, J. Electrochem. Soc., 141, 1577 (1994).
22. B. Sopori, V. R. Mehta, P. Rupnowski, D. Domine, M. Romero, H. Moutinho, B. To, R. Reedy, M. Al-Jassim, A Shaikh, N. Merchant, and C. Khadilkar, Proc. 22nd
European Photovoltaic Solar Energy Conference, Milan, p. 841 (2007).
23. F. M. Roberts and L. G. Wilkinson, J. Mater. Sci., 3, 110 (1968).
24. F. M. Roberts and L. G. Wilkinson, J. Mater. Sci., 6, 189 (1971).
25. Wells and Oilver C., Scanning Electron Microscopy, McGraw-Hill, Chicago, ILL (1968).
26. 李驊登,“掃瞄式電子顯微鏡之原理及功能(上)", 科儀新知, 51, 44 (1989).
27. D. D. Perovic, M. R. Castell, A. Howie, C. Lawoie, T. Tiedje, and J. S. W. Cole, Ultramicroscopy, 58, 104 (1995).
28. C. P. Sealy, M. R. Castell, and Wilshaw, J. Electron Microsc., 49, 311 (2000).
29. D. C. Joy and C. Joy, Micron, 27, 247 (1996).
30. Y. Chakk and D. Horvitz, J Mater. Sci., 41, 4554 (2006).
31. W. R. Runyan, Semiconductor Measurements and Instrumentation, McGraw-Hill, New York (1975).
32. W. C. Hsiao and C. P. Liu, Appl. Phys. Lett., 88, 212104 (2006).
33. B. Teichert, Phys. Rep., 365, 335 (2002).
34. Z. Zhang and M. G. Lagally, Morphological Organization in Epitaxial Growth and Removal, World Scientific, Singapore (1998).
35. 蘇炎坤,“二次離子質譜儀之分析與應用”, 科儀新知, 9, 9 (1988).
36. 吳志寧, “二次離子質譜儀分析技術在半導體製程上的應用”, 電子月刊, 9, 138 (2000).
37. A. Metz and R. Hezel, in proceeding of the 28th IEEE Photovoltaic Specialists conf., Anchorage, Canada, p. 172, (2000).
38. V. Meemongkolkiat, M. Hilali, and A. Rohatgi, in proceeding of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, p. 1467 (2003).
39. B. Sopori, V. Mehta, P. Rupnowski, H. Moutinho, A. Shaikh, C. Khadilkar, M. Bennett, and D. Carlson, in proceeding of the Conference on Material Research
Society (MRS) Fall Meeting, Boston, p. 1 (2008).
40. V. M. Zalkin, The nature of eutectic alloys and contact melting effect, Metallurgy, Russian (1987).
41. S. Arai, S. Tsukimoto, H. Miyai, and H. Saka, J. Electron Microscopy, 48, 317 (1999).
42. S. Tsukimoto, S. Arai, and H. Saka, Philosophical Magazine Lett., 79, 913 (1999).
43. P. Lolgen, C. Leguijt, J. A. Eikelboom, R. A. Steeman, W. C. Sinke, L. A. Verhoef, P. F. A. Alkemade, E. Algar, in: Proceedings of the 23rd photovoltaic Specialists
Conference, Louisville, KY, IEEE, p. 236 (1993).
44. M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997).
45. M. Wolf, and H. Rauschenbach, Advanced Energy Conversion, 3, 455 (1963).
46. V. A. Ukraintsev, P. J. Chen, J. T. Gray, C. F. Machala, L. K. Magel, and M. C. Chang, J. Vac. Sci. Technol. B, 18, 580 (2000).
47. K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Phys. Lett., 81, 2629 (2002).
48. Z. Wang, T. Hirayama, K. Sasaki, H. Saka, and N. Kato, Appl. Phys. Lett., 80, 246 (2002).
49. X. D. Wang, R. Mahaffy, K. Tan, C. K. Shih, J. J. Lee, and M. Foisy, J. Vac. Sci. Technol. B, 18, 560 (2000).
50. A. A. Suvorova, S. Samarin, Surf. Sci., 601, 4428 (2007).
51. M. EI-Gomati, F. Zaggout, H. Jayacody, S. Tear, and K. Wilson, Surf. Interface Anal., 37, 901 (2005).
52. K. W. A. Chee1, C. Rodenburg, C. J. Humphreys Journal of Physics: Conference Series 126, 012033 (2008)
53. P. Kazemian, C. Schonjahn, C. J. Humphreys, Institute of Physics Conference Series, 180, 593 (2003).
54. Z. Makaro, G. Battistig, Z. E. Horvath, J. Likonen, and I. Barsony, Vaccum, 50, 481 (1998).
55. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Taiwan (1981).
校內:2021-12-31公開