簡易檢索 / 詳目顯示

研究生: 方信喬
Fang, Hsin-Chiao
論文名稱: 電子顯微鏡研究矽太陽能電池背電極之形成與微觀結構
Microscopy Study of Contact Formation and Microstructure on the Backside of Si Solar Cells
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 118
中文關鍵詞: 矽太陽能電池背部表面電場穿透式電子顯微鏡二次電子對比
外文關鍵詞: Si Solar Cell, back surface field (BSF), transmission electron microscopy (TEM), secondary electron contrast
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用掃描式顯微鏡(SEM)與穿透式電子顯微鏡(TEM)探討太陽能電池背部電極的微觀結構,並研究製程上的變數對於微觀結構與電性的影響。另一方面,SEM中的二次電子(secondary electron, SE),對於試片的摻雜濃度是非常靈敏的,因此本研究同時發展利用二次電子的影像對比來觀察背部表面電場(back surface field, BSF)的技術。
    本論文依研究主題可區分為三大部分。第一部分,吾人以升溫速度做為變數來製作Al網印(screen-printed)太陽能電池,並利用電子顯微鏡來研究背部表面織構(texture)對於合金過程及電性的影響。SEM及TEM的分析結果顯示,較慢的升溫速度(20 and 40 oC/s)會造成不均勻的BSF;而且Al-Si合金/Si基材的界面有表面呈現(111)平面的Si-rich凸起物(extrusion)形成,導致較低的開路電壓(Voc)。本研究發現,Si-rich凸起物的形成主要與導電膠中Al粉的顆粒大小不同有關;並且藉由增加升溫速度,可改善因為表面織構所造成的背部電極品質劣化的現象。
    第二部分,吾人以帶狀爐來製作Al網印太陽能電池,並研究導電膠內小顆粒Al的含量對於合金過程及電性的影響。SEM及TEM的分析結果顯示,導電膠中缺少小顆粒Al會造成不均勻的BSF、(111)平面的Al-rich凸起物在Al-Si合金/Si基材的界面形成、以及有未融化的Si-rich rod存在於Al-Si合金層,這些都會造成較低的開路電壓(Voc)、短路電流密度(Jsc)與填充因子(FF)。因此,可藉由增加小顆粒Al的含量來改善BSF與Al-Si合金層的品質。在我們使用的導電膠中,27 wt%的小顆粒Al含量呈現最好的電極品質,當添加量大於27 wt%時就會造成晶粒較小的多晶Al-Si合金形成,而且Al-Si合金層會很容易從fired-Al脫落。
    第三部分,吾人分析商業用太陽能電池之背部結構,並利用SEM中二次電子影像的對比來觀察BSF layer。SEM及TEM的分析結果顯示,此試片BSF layer的厚度較薄、 p-p+的界面不均勻、以及在Al-Si合金/Si基材界面有Al-rich凸起物的存在。這些現象表示此太陽能電池的背部結構還有改進的空間。以SEM之二次電子影像判讀,選擇性蝕刻會造BSF layer的厚度增加,而且產生的厚度判讀誤差約為15%。然而,二次電子影像的對比強度顯示,在BSF layer中接近BSF/Al-Si合金界面的摻雜濃度比p-type Si低,與Al-Si二元相圖的預測不相符。這是因為BSF與Al-Si合金的界面形成內部電場,使得電子往金屬飄移,因此二次電子的強度才會在BSF與Al-Si合金層的接面減弱。

    This dissertation explores the microstructure on the backside contact of Si solar cells by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of experimental parameters on microstructure and solar cell performance are investigated. In addition, secondary electron (SE) generation is very sensitive to the dopant levels, which is developed to delineate the junction profile of back surface field (BSF) layer.
    The main content of this dissertation can be divided into three parts. First, Al screen-printed Si solar cells are fabricated with various ramp-up rates during co-firing, and the impact of the textured back surface on the alloying process in relation to solar cell performance is investigated. SEM and TEM analyses show that slow ramp-up rates of 20 and 40°C/s would cause a nonuniform BSF layer and the presence of Si-rich extrusions at the Al–Si alloy/Si interface with faceting along (111) planes of Si, which results in a lower open-circuit voltage (Voc). The formation mechanism of the Si-rich extrusions is proposed to be related to the packing of nonuniform Al powder size distribution in the paste, and the degradation of the back contact formation by the textures could be avoided by optimizing the ramp-up rate.
    Secondly, Al screen printed Si solar cells are fabricated in a belt system, and the impact of the fine Al particle content in the Al paste on the alloying process in relation to solar cell performance is investigated. SEM and TEM analyses show that a lack of fine Al particles in the Al paste causes nonuniform BSF, Al-rich extrusions at the Al–Si alloy/Si interface with faceting along the (111) planes of Al, and unmelted Si-rich rods in the Al–Si alloy layer after alloying. These result in lower Voc, short-circuit current density (Jsc), and fill factor (FF). The quality of the BSF and the Al–Si alloy layer could thus be improved by optimizing the fine Al particle content in the Al paste. Of the four pastes with different fine Al particle contents prepared for comparison, the content of 27 wt % renders the best contact quality, whereas an even higher content would cause a finer-grained polycrystalline Al–Si alloy to form and the fired Al layer to peel off from the Al–Si alloy layer.
    In the third part, the microstructure on the backside contact of commercial Si solar cells and delineated the junction profile of back surface field (BSF) layer by using secondary electron (SE) image in the SEM are investigated. SEM and TEM analyses show that some features on the backside contact including nonuniform BSF, thin BSF thickness, and Al-rich extrusions at the Al–Si alloy/Si interface indicate the optimization of microstructure for commercial Si solar cells is still underway. In SEM analysis, in comparison with the imaging with SE imaging, the BSF thickness tends to be overestimated by 15% for the sample under dopant selective etching. Moreover, the projected intensity line profiles can be related to the doping concentration variations within a BSF layer. However, the results show that Al concentration in p-Si substrate is even higher than that in the BSF layer near the BSF/Al-Si alloy interface. This is not consistent with the theory from the Al-Si binary phase diagram. The mechanism of reduction of SE contrast at the BSF/Al-Si alloy interface is proposed to be related to the existence of an electric field between BSF layer and Al-Si alloy layer, which tends to push the electrons into the metal and reduces the SE emission at the interface.

    總目錄 中文摘要...................................................I Abstract ...............................................III 誌謝......................................................V 總目錄....................................................VI 表目錄..................................................VIII 圖目錄....................................................IX 第一章 緒論 1-1 前言...................................................1 1-2 研究目的與論文架構.......................................3 第二章 理論基礎與文獻回顧 2-1 太陽能電池原理..........................................5 2-1.1 太陽能電池的光電效應...................................5 2-1.2 太陽能電池等效電路模型(effective circuit model).........9 2-1.3 太陽能電池的電氣特性...................................12 2-2 單/多晶矽太陽能製程簡介..................................15 2-2.1 表面粗造化處理(textured process).....................15 2-2.2 製作p-n junction ..................................17 2-2.3 製造抗反射層(antireflection layer) ..................17 2-2.4 製作金屬電極(metal contact) .........................17 2-3 背部表面電場(back surface field) ......................19 2-3.1 Al-BSF 的形成.......................................19 2-3.2 影響Al-BSF 品質的因素................................24 2-4 掃描式電子顯微鏡(SEM)之二次電子影像對比...................36 2-4.1 SEM 成像原理........................................36 2-4.2 摻雜對比(Dopant contrast)與二次電子理論...............39 2-4.3 影響二次電子影像解析度的因素...........................43 第三章 實驗方法與步驟 3-1 實驗流程..............................................50 3-2 試片製備..............................................51 3-2.1 太陽能電池試片製作....................................51 3-2.2 SEM 截面(cross-section)試片製備......................55 3-2.3 TEM 截面(cross-section)試片製備......................58 3-2.4 SIMS 試片製備.......................................62 3-3 分析儀器介紹...........................................63 3-3.1 高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy,HRTEM) ..............................63 3-3.2 掃瞄式電子顯微鏡 (Scanning electron microscopy,SEM)...66 3-3.3 二次離子質譜儀 (Secondary ion mass spectrometer,SIMS).66 3-3.4 太陽光模擬器(solar simulator)量測分析..................67 第四章 結果與討論 4-1 研究表面織構(texture)對於對電極的形成與電性的影響...........68 4-1.1 前言................................................68 4-1.2 升溫速度對於BSF layer 及開路電壓(Voc)的影響.............69 4-1.3 升溫速度對於微觀結構(microstructure)的影響..............73 4-1.4 Si-rich extrusion 形成機制探討.......................77 4-1.5 結論................................................79 4-2 研究導電膠內小顆粒鋁含量對於背電極的形成與電性的影響..........80 4-2.1 前言................................................80 4-2.2 小顆粒Al含量對於背部電極形貌的影響.......................80 4-2.3 小顆粒Al含量對於電性的影響.............................84 4-2.4 小顆粒Al含量對於微結構的影響...........................86 4-2.5 結論................................................91 4-3 商用太陽能電池背部結構分析與利用二次電子影像定義背部表面電場(back surface field,BSF)的寬度與濃度分佈..........................92 4-3.1 前言................................................92 4-3.2 商業用太陽能電池的背部電極形貌與微結構....................93 4-3.3 商業用太陽能電池的SIMS分析.............................96 4-3.4 BSF layer在掃瞄式電子顯微鏡(SEM)中的二次電子影像對比.....99 4-3.5 結論...............................................108 第五章 總結.......................................................109 第六章 未來研究方向.........................................111 參考文獻..................................................112 著作.....................................................116 自述.....................................................118 表目錄 表2-1 BSF 厚度理論值與實驗值之比較表(4mg/cm2 screen-printed Al)......................................................27 表2-2 不同溫度對於開路電壓的影響(Voc).........................30 表3-1 各組試片之實驗條件.....................................54 圖目錄 圖2-1 太陽光照射在太陽能電池之架構圖...........................7 圖2-2 p-n 接面太陽能電池能帶示意圖............................8 圖2-3 理想太陽電池等效電路圖.................................10 圖2-4 非理想太陽電池等效電路圖...............................11 圖2-5 太陽能電池照光之電壓-電流曲線圖.........................14 圖2-6 金字塔結構之SEM 圖 (tilt 52o)........................16 圖2-7 太陽能電池照光面之電極示意圖............................18 圖2-8 背部電極之SEM 横截面圖................................21 圖2-9 含有BSF 構造之太陽能電池能階模式........................22 圖2-10 (a)Al-Si 二元相圖,(b)Si 中Al 的固溶度之局部放大二元相圖.......................................................23 圖2-11 不同溫度對於BSF厚度之SIMS分析圖.......................26 圖2-12 不同鋁沉積厚度(a)700 mg Al/92 cm2與(b) 1300 mg Al/92 cm2在BSF區域之展阻量測分析圖....................................28 圖2-13 不同溫度對於Al摻雜濃度、BSF厚度之電化學(CV)分析圖........29 圖2-14 Al-Si 反應界面在(a)慢升溫速度與(b)快升溫速度條件之截面SEM 圖........................................................31 圖2-15 升溫速度對於開路電壓(Voc)的影響,CFP 與RTP 分別為一般爐子燒結與快速退火爐燒結............................................32 圖2-16 925oC 熱處理後,fired-Al 表面形成凸塊(bump),其使用鋁膠厚度為(a) 24um;(b) 40 um;(c) 62 um..........................33 圖2-17 形成凸塊(bump)之最高製程溫度與鋁膠厚度的交互關係.........34 圖2-18 925 oC 熱處理後凸塊(bump)區域之截面SEM 圖(鋁膠厚度為24 um)......................................................35 圖2-19 掃描式電子顯微鏡二次訊號示意圖.........................38 圖2-20 n 型與p 型材料的能帶圖...............................41 圖2-21 一低功函數的小塊材料(A)被高公函數的材料(B)所包圍,(a)為兩種材料分離的狀態下,(b)則為兩種材料連結時的狀態....................42 圖2-22 入射電子束的作用區與加速電壓的關係圖....................45 圖2-23 背面鋁膠燒結後在不同加速電壓的二次電子影像圖..............46 圖2-24 在加速電壓2.5 keV 的條件下,電子束電流對於摻雜對比(Cpn)的影響........................................................47 圖2-25 硼(B)摻雜p-i-p-i 超晶格結構之SEM 圖,(a)為試片傾斜0o,(b)為試片傾斜5o ................................................48 圖2-26 Si基材的二次電子產生率對不同入射電壓隨著試片傾斜角度的變化圖........................................................49 圖3-1 實驗流程圖............................................50 圖3-2 太陽能電池之試片製作流程圖..............................52 圖3-3 未熱處理之太陽能試片結構示意圖...........................53 圖3-4 SEM 橫截面試片製作流程圖...............................57 圖3-5 TEM 橫截面試片製作流程圖...............................60 圖3-6 TEM 橫截面試片製作流程示意圖............................61 圖3-7 (a)TEM成像方式之示意圖,(b)利用物鏡光圈選擇direct beam 與diffraction beam 形成明視野與暗視野像示意圖...................65 圖4-1 背部texture 表面在不同升溫速度條件下所形成之Al-BSF 截面SEM 圖,其升溫速度為(a) 20,(b) 40,(c) 60 oC/s..................70 圖4-2 (a)升溫速度慢,與(b)升溫速度快對於熱傳導的影響.............71 圖4-3 升溫速度對於開路電壓的影響(Voc).........................72 圖4-4 不同升溫速度(a) 20,(b) 40,與(c) 60 oC/s 之截面TEM 圖,(b)之插圖為界面凸起物(extrusion)之X 光能量散射光譜(EDS)。(d)升溫速度40 oC/s之extrusion 放大TEM 圖及相對之電子繞射圖...............75 圖4-5 網印(screen-printing)後不同區域之橫截面SEM 圖(未經過熱處理........................................................76 圖4-6 形成Si extrusions 之示意圖。(a)Al 導電膠網印(screen printing)至背部texture 表面,(b)大顆粒之Al 填在金字塔之間,小顆粒Al 填入金字塔底部或大顆粒之間的空隙,(c)Al 顆粒與Si 產生Al-Si 合金,(d)表面呈現(111)平面的extrusion 在介面形成,而且底部有頸(necking)的現象,(e)冷卻過程中Al-BSF 再成長............................78 圖4-7 不同小顆粒Al 含量的導電膠熱處理後之Al-Si 界面SEM 圖,其含量為(a)0,(b) 16,(c) 27,(d) 32 wt%...........................82 圖4-8 小顆粒Al 含量32 wt%之背向散射電子影像(試片製備時,先填入G1 膠 固定Al-fired layer).......................................83 圖4-9 小顆粒Al 含量對於太陽能電池之開路電壓(Voc)、短路電流密度(Jsc)及填充因子(FF)的影響........................................85 圖4-10 (a)含量0 wt%之截面TEM 影像及X 光能量散射光譜(EDS),(b)為圖(a)中Al-extrusion 之電子繞射圖。(c)與(d)分別為小顆粒Al 含量16 與27 wt%之截面TEM 影像.......................................88 圖4-11 (a)含量32 wt%之截面TEM 影像,(b)為圖(a)中Al-Si alloy 之電子繞射圖...................................................89 圖4-12 小顆粒Al 含量對於背部電極之片電阻的影響..................90 圖4-13 商業用太陽能電池之背部電極SEM 横截面圖...................94 圖4-14 (a)商業用太陽能電池背部電極之横截面TEM 明視野影像 extrusion 相對應之電子繞射圖,(b)背部電極之extrusion 横截面TEM 暗視野影像(g=-200),(c)為圖(a)中extrusion 之X 光能量散射光譜(EDS)...........95 圖4-15 SIMS 之Al、Si 濃度縱深分佈圖..........................97 圖4-16 (a)SIMS 分析後之SEM 圖,(b)未做SIMS 分析前之表面X 光能量散射光譜(EDS)................................................98 圖4-17 背部電極之横截面SEM 二次電子影像圖,(a)研磨拋光法製備試片(未 腐蝕),(b)直接劈裂法製備試片。(c)為圖(b)中texture 之X 光能量散射光 譜(EDS)..................................................102 圖4-18 (a)背部電極之横截面SEM 二次電子影像圖,(b)蝕刻後背部電極之横截 面SEM 圖.................................................103 圖4-19 背部電極之横截面SEM二次電子影像在不同區域之對比強度縱深分佈圖.......................................................104 圖4-20 (a) Al 與p-type Si 接觸前的能帶示意圖,(b) Al 與p-type Si 接觸後的能帶示意圖.......................................105 圖4-21 (a) Al-Si alloy 蝕刻後之横截面SEM 二次電子影圖,(b)為圖(a)中之對比強度縱深分佈圖......................................106 圖4-22 BSF layer 區域中(接近BSF/Al-Si alloy 界面)之電子能量損失能譜(Electron Energy Loss Spectrum)........................107

    參考文獻
    1. 楊素華、蔡泰成,“太陽能電池", 科學發展, 390, 51(2005).
    2. G. R. Davis, Sci. Amer., 263, 21(1990).
    3. K. N. Amulya and J. Goldemberg, Sci. Amer., 263, 63 (1990).
    4. W. Hoagland, Sci. Amer., 273, 170 (1995).
    5. 莊嘉琛,“太陽能工程-太陽能電池篇", 全華出版社 (1997).
    6. 林坤立,“單晶矽太陽能電池製程及其頻譜響應之研究", 雲林科技大學電子工程研究所, 碩士論文 (2004).
    7. 蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起", 物理雙月刊, 27, 701 (2005).
    8. 曾俊凱,“氮化鎵銦系列材料應用於再生能源-太陽能電池&光電化學水解氫氣元件之研究", 國立成功大學光電科學與工程研究所大學電子工程研究所, 碩士論文 (2009).
    9. A. W. Blakers and M. A. Green, Appl. Phys. Lett., 48, 215 (1986).
    10. H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K. Mukherjee, IEEE Trans. Electron Devices, 39, 1100 (1992).
    11. A. Rohatgi, V. Yelundur, J. Jeong, A. Ristow, M. Hilali, B. Damiani, V. Kumar, and P. K. Basu, Proceeding of the 11th International workshop on the Physics of Semiconductor Devices, Delhi, India, p. 73 (2001).
    12. U. Gangopadhyay, S. K. Dhungel, K. Kim, U. Manna, P. K. Basu, H. J. Kim, B. Karunagaran, K. S. Lee, J. S. Yoo, and J. Yi, Semicond. Sci. Technol., 20, 938 (2005).
    13. D. S. Kim, V. Yelundur, K. Nakayashiki, B. Rounsaville, V. Meemongkolkiat, A. M. Gabor, and A. Rohatgi, Sol. Energy Mater. Sol. Cells, 90, 1227 (2006).
    14. 鄭名山,“太陽能發電簡介", 物理雙月刊, 29, 707 (2007).
    15. A. Kaminski, B. Vandelle, A. Fave, J. P. Boyeaux, L. Q. Nam, R. Monna, D. Sarti, A. Laugier, Sol. Energy Mater. Sol. Cells, 72, 373 (2002).
    16. S. Narasimha, A. Rohatgi, and A. W. Weeber, IEEE Trans. Electron Devices, 46, 1363 (1999).
    17. J. G. Fossum, IEEE Trans. Electron Devices, ED-24, 322 (1977).
    18. J. D. Alamo, J. Eguren, and A. Luque, Solid-State Electron., 24, 415 (1981).
    19. M. Bähr, S. Dauwe, A. Lawerenz, and L. Mittelstädt, Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, p. 926 (2005).
    20. V. Meemongkolkiat, K. Nakayashiki, D. S. Kim, R. Kopecek, and A. Rohatgi, J. Electrochem. Soc., 153, G53 (2006).
    21. J. A. Amick, F. J. Bottari, and J. I. Hanoka, J. Electrochem. Soc., 141, 1577 (1994).
    22. B. Sopori, V. R. Mehta, P. Rupnowski, D. Domine, M. Romero, H. Moutinho, B. To, R. Reedy, M. Al-Jassim, A Shaikh, N. Merchant, and C. Khadilkar, Proc. 22nd
    European Photovoltaic Solar Energy Conference, Milan, p. 841 (2007).
    23. F. M. Roberts and L. G. Wilkinson, J. Mater. Sci., 3, 110 (1968).
    24. F. M. Roberts and L. G. Wilkinson, J. Mater. Sci., 6, 189 (1971).
    25. Wells and Oilver C., Scanning Electron Microscopy, McGraw-Hill, Chicago, ILL (1968).
    26. 李驊登,“掃瞄式電子顯微鏡之原理及功能(上)", 科儀新知, 51, 44 (1989).
    27. D. D. Perovic, M. R. Castell, A. Howie, C. Lawoie, T. Tiedje, and J. S. W. Cole, Ultramicroscopy, 58, 104 (1995).
    28. C. P. Sealy, M. R. Castell, and Wilshaw, J. Electron Microsc., 49, 311 (2000).
    29. D. C. Joy and C. Joy, Micron, 27, 247 (1996).
    30. Y. Chakk and D. Horvitz, J Mater. Sci., 41, 4554 (2006).
    31. W. R. Runyan, Semiconductor Measurements and Instrumentation, McGraw-Hill, New York (1975).
    32. W. C. Hsiao and C. P. Liu, Appl. Phys. Lett., 88, 212104 (2006).
    33. B. Teichert, Phys. Rep., 365, 335 (2002).
    34. Z. Zhang and M. G. Lagally, Morphological Organization in Epitaxial Growth and Removal, World Scientific, Singapore (1998).
    35. 蘇炎坤,“二次離子質譜儀之分析與應用”, 科儀新知, 9, 9 (1988).
    36. 吳志寧, “二次離子質譜儀分析技術在半導體製程上的應用”, 電子月刊, 9, 138 (2000).
    37. A. Metz and R. Hezel, in proceeding of the 28th IEEE Photovoltaic Specialists conf., Anchorage, Canada, p. 172, (2000).
    38. V. Meemongkolkiat, M. Hilali, and A. Rohatgi, in proceeding of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, p. 1467 (2003).
    39. B. Sopori, V. Mehta, P. Rupnowski, H. Moutinho, A. Shaikh, C. Khadilkar, M. Bennett, and D. Carlson, in proceeding of the Conference on Material Research
    Society (MRS) Fall Meeting, Boston, p. 1 (2008).
    40. V. M. Zalkin, The nature of eutectic alloys and contact melting effect, Metallurgy, Russian (1987).
    41. S. Arai, S. Tsukimoto, H. Miyai, and H. Saka, J. Electron Microscopy, 48, 317 (1999).
    42. S. Tsukimoto, S. Arai, and H. Saka, Philosophical Magazine Lett., 79, 913 (1999).
    43. P. Lolgen, C. Leguijt, J. A. Eikelboom, R. A. Steeman, W. C. Sinke, L. A. Verhoef, P. F. A. Alkemade, E. Algar, in: Proceedings of the 23rd photovoltaic Specialists
    Conference, Louisville, KY, IEEE, p. 236 (1993).
    44. M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997).
    45. M. Wolf, and H. Rauschenbach, Advanced Energy Conversion, 3, 455 (1963).
    46. V. A. Ukraintsev, P. J. Chen, J. T. Gray, C. F. Machala, L. K. Magel, and M. C. Chang, J. Vac. Sci. Technol. B, 18, 580 (2000).
    47. K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Phys. Lett., 81, 2629 (2002).
    48. Z. Wang, T. Hirayama, K. Sasaki, H. Saka, and N. Kato, Appl. Phys. Lett., 80, 246 (2002).
    49. X. D. Wang, R. Mahaffy, K. Tan, C. K. Shih, J. J. Lee, and M. Foisy, J. Vac. Sci. Technol. B, 18, 560 (2000).
    50. A. A. Suvorova, S. Samarin, Surf. Sci., 601, 4428 (2007).
    51. M. EI-Gomati, F. Zaggout, H. Jayacody, S. Tear, and K. Wilson, Surf. Interface Anal., 37, 901 (2005).
    52. K. W. A. Chee1, C. Rodenburg, C. J. Humphreys Journal of Physics: Conference Series 126, 012033 (2008)
    53. P. Kazemian, C. Schonjahn, C. J. Humphreys, Institute of Physics Conference Series, 180, 593 (2003).
    54. Z. Makaro, G. Battistig, Z. E. Horvath, J. Likonen, and I. Barsony, Vaccum, 50, 481 (1998).
    55. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Taiwan (1981).

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE