| 研究生: |
李家緯 Li, Jia-Wei |
|---|---|
| 論文名稱: |
設計及合成多羥基吡咯烷生物鹼衍生物及其生物應用 Synthesis of polyhydroxylated pyrrolidine analogs and their use in biological studies |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 亞胺糖 、醣加工酶 、天然物啟發組合式化學(NPICC) 、環硝酮 、骨架 、結構多樣性 、方便 、(α-hGMII)高基氏體甘露糖苷酶 、HA的N-糖肽 、N-聚醣調節劑 、結構活性測試關係(SAR) 、化學探針 |
| 外文關鍵詞: | Iminosugars, glycoprocessing enzymes, natural product-inspired combinatorial chemistry (NPICC), cyclic nitrone, scaffolds, structural diversity, convenient, Golgi α-Mannosidase II, N-glycopeptide of Hemagglutinin, N-glycan modulator, Anticancer, Structure activity relationship (SAR), chemical probes |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然存在的或合成的亞氨基糖被認為可以模擬碳水化合物或其水解過渡態,從而可能有效地抑制特定酵素,在結構上這些含有吡咯烷或哌啶基序骨架的材料表現出廣泛的生物學特性,例如多羥基化吡咯烷和哌啶及其衍生物對各種糖加工酶具有有效和選擇性的抑制效果,這些醣加工酶與糖尿病、癌症、病毒感染和溶酶體貯積症等疾病有關,由於它們具有廣泛的生物活性,這些結構被認為是藥物設計的特殊骨架。
在本論文中具有兩個化學合成重點:(I)利用天然產物啟發的組合式化學(NPICC)作為關鍵策略去合成結構多樣化分子群和(II)使用非對映選擇性中間體2-1(環硝酮)合成兩個主要骨架2-13和2-14。對於結構多樣性,這兩種骨架通過組合化學與一系列取代的異氰酸酯分子進行平行合成反應,然後快速純化以方便地生成兩吡咯烷衍生物之分子群。
這一系列分子被應用於對(α-hGMII)高基氏體甘露糖苷酶的抑制研究,抑制此酵素被認為是一個有前途的N-聚醣調節靶點,篩選出幾個小分子如2-15用於對 Hemagglutinin 的N-糖蛋白進行 N-聚醣調節研究,通過 LC-MS/MS 分析發現2-15可以更好地減少複雜型聚醣並增加雜化型聚醣,此分子被認定為一種潛在的N-聚醣調節劑。
另一方面,這兩個分子群也被應用於細胞毒性研究,我們發現2-52 和 2-53 對 MCF7 等幾種癌細胞表現出一定的細胞毒性(EC50 ≈ 10 μM) ,與現行藥物Doxorubicin的特性相比,兩者都顯示出相對好的抗癌效果且對於正常細胞(如 MCF10A)的毒性更小。
這些結果致使我們對亞氨基糖應用產生新的思考,在建立了結構活性關係(SAR)分析後,我們計劃合成化學探針去找出它們對應的細胞結合劑,如酶或受體,以確定它們在抗癌效果作用的標靶。
Naturally occurring or synthetic iminosugars have been thought to mimic carbohydrates or their hydrolysis transition states, which allow to inhibit the targeting enzymes effectively. Structurally, these molecules containing the skeleton of a pyrrolidine or piperidine motif exhibit a wide range of biological properties. For example, polyhydroxylated pyrrolidines and piperidines and their derivatives have potent and selective inhibitory activities against various glycoprocessing enzymes that are involved in diseases such as diabetes and cancer, viral infections, and lysosomal storage disorders. Because of their broad-spectrum biological activities, these cores are considered privileged scaffolds for drug design.
In this thesis, two synthetic features are (I) Natural product-inspired combinatorial chemistry (NPICC) as a key strategy to generate structurally diverse libraries and (II) using the diastereoselective intermediate 2-1 (cyclic nitrone) to synthesize two main scaffolds 2-13 and 2-14. For the structural diversity, these two scaffolds are applied to parallelly react with a series of substituted isocyanate molecules via a combinatorial chemistry approach, followed by rapid purification to conveniently generate two pyrrolidine-based libraries (Library I and Library II).
These libraries were applied for the inhibition study against mannosidases. Among them, Golgi mannosidase II is thought as a promising N-glycan modulation target. Hit 2-15 was sieved out, followed by the N-glycan modulation study toward the N-glycoproteins of Hemagglutinin. Based on our results, 2-15 is qualified as a new N-glycan modulator to perform the better activity to reduce the complex typed glycans and increase hybrid typed glycans by LC-MS/MS analysis.
On the other hand, these two libraries were also applied for cytotoxicity studies. 2-52 and 2-53 exhibited certain cytotoxicity activity (EC50 ≈ 10 μM) against several cancer cell lines such as MCF7. Both showed better anticancer profiling, and less toxicity toward normal cells such as MCF10A, compared to the property of the first-line drug Doxorubicin.
These results guide us to a new thinking for iminosugar applications. Upon the structure activity relationship (SAR) analysis is established, we plan to synthesize chemical probes to fish out their corresponding cell binders such as enzymes or receptors toward anticancer cell lines to identify their primary targets in the future.
1. Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R. Iminosugars Past, Present and Future: Medicines for Tomorrow. Drug Discov. 2011, 16, 107–118.
2. Tamburrini, A.; Colombo, C.; Bernardi, A. Design and Synthesis of Glycomimetics: Recent Advances. Med. Res. Rev. 2020, 40, 495–531.
3. Alonzo, D. D.; Guaragna, A.; Palumbo, G. Glycomimetics at the Mirror: Medicinal Chemistry of L-Iminosugars. Curr. Med. Chem. 2009, 16, 473-505.
4. Zechel, D. L.; Withers, S. G. Glycosidase Mechanisms: Anatomy of a Finely Tuned Catalyst. Acc. Chem. Res. 2000, 33, 11–18.
5. Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chem. Rev. 2002, 102, 515–553.
6. Paulsen, H., Carbohydrates Containing Nitrogen or Sulfur in the “Hemiacetal” Ring. Angew. Chem. Int. Engl. 1966, 5, 495-551.
7. Paulsen, H. and Todt, K., Monosaccharide mit stick stoffhaltigem Ring, XII. Uber Monosaccharide mit stickstoffhaltigem Siebenring. Chem. Ber. 1967, 100, 512-517.
8. Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Recent Advances in the Total Synthesis of Piperidine Azasugars. Eur. J. Org. Chem. 2005, 2159–2191.
9. Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J., Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry. 2000, 11, 1645-1680.
10. Pearson, W. H.; Hines, J. v. Total Syntheses of (+)-Australine and (-)-7-Epialexine. J. Org. Chem. 2000, 65, 5785–5793.
11. Tsou, E. L.; Chen, S. Y.; Yang, M. H.; Wang, S. C.; Cheng, T. R. R.; Cheng, W. C. Synthesis and Biological Evaluation of a 2-Aryl Polyhydroxylated Pyrrolidine Alkaloid-Based Library. Bioorg. Med. Chem. 2008, 16, 10198–10204.
12. Johnson, C. R.; Johns, B. A. Glycomimetics: A Versatile de Novo Synthesis of-1-C-Aryl-Deoxymannojirimycin Analogues. J. Org. Chem. 1997, 62, 6046–6050.
13. Harit, V. K.; Ramesh, N. G. Amino-Functionalized Iminocyclitols: Synthetic Glycomimetics of Medicinal Interest. RSC Advances. 2016, 111, 109528–109607.
14. Essentials of Glycobiology, ed. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart and M. E. Etzler, Cold Spring Harbor, NY, 2nd edn, 2009.
15. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site: Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. J. Am. Chem. Soc. 1997, 119, 681–690
16. Shah, N.; Kuntz, D. A.; Rose, D. R. Golgi-Mannosidase II Cleaves Two Sugars Sequentially in the Same Catalytic Site. Proc. Natl. Acad. Sci. U.S.A. 2008, 10, 9570-9575.
17. Rose, D. R. Structure, Mechanism and Inhibition of Golgi α-Mannosidase II. Curr. Opin. Struct. Biol. 2012, 22, 558–562.
18. Catherine R.; Douglas A. K.; Anne L.; Rose W.; Tara S.; David R. R.; Marcel van den H.; David B. R. The Drosophila GMII gene Encodes a Golgi Αα-Mannosidase II. J. Cell Sci. 1999, 112, 3319–3330.
19. Choi, H. Y.; Park, H.; Hong, J. K.; Kim, S. D.; Kwon, J. Y.; You, S. K.; Do, J.; Lee, D. Y.; Kim, H. H.; Kim, D. il. N-Glycan Remodeling Using Mannosidase Inhibitors to Increase High-Mannose Glycans on Acid α-Glucosidase in Transgenic Rice Cell Cultures. Sci. Rep. 2018, 8, 16130.
20. She, Y. M.; Farnsworth, A.; Li, X.; Cyr, T. D. Topological N-Glycosylation and Site-Specific N-Glycan Sulfation of Influenza Proteins in the Highly Expressed H1N1 Candidate Vaccines. Sci. Rep. 2017, 7, 10232.
21. Fiaux, H.; Kuntz, D. A.; Hoffman, D.; Janzer, R. C.; Gerber-Lemaire, S.; Rose, D. R.; Juillerat-Jeanneret, L. Functionalized Pyrrolidine Inhibitors of Human Type II α-Mannosidases as Anti-Cancer Agents: Optimizing the Fit to the Active Site. Bioorg. Med. Chem. 2008, 16, 7337–7346.
22. Jean M. H. van den E.; Douglas A. K.; David R. R. Structure of Golgi a-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 2001, 20, 3008-3017.
23. Zhang, L.; Sun, F.; Li, Y.; Sun, X.; Liu, X.; Huang, Y.; Zhang, L. H.; Ye, X. S.; Xiao, J. Rapid Synthesis of Iminosugar Derivatives for Cell-Based in Situ Screening: Discovery of “Hit” Compounds with Anticancer Activity. ChemMedChem. 2007, 2, 1594–1597.
24. Wrodnigg, T. M.; Steiner, A. J.; Ueberbacher, B. J. Natural and Synthetic Iminosugars as Carbohydrate Processing Enzyme Inhibitors for Cancer Therapy. Anticancer Agents Med. Chem. 2008, 8, 77-85.
25. Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Lara Santos, L.; Ferreira, J. A. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front. Oncol. 2019, 9, 380.
26. Kuntz, D. A.; Tarling, C. A.; Withers, S. G.; Rose, D. R. Structural Analysis of Golgi α-Mannosidase II Inhibitors Identified from a Focused Glycosidase Inhibitor Screen. Biochem. 2008, 47, 10058–10068.
27. Stowell, S. R.; Ju, T.; Cummings, R. D. Protein Glycosylation in Cancer. Annu. Rev. Pathol. 2015, 10, 473–510.
28. Chen, W.-A.; Chen, Y.-H.; Hsieh, C.-Y.; Hung, P.-F.; Chen, C.-W.; Chen, C.-H.; Lin, J.-L.; Cheng, T.-J. R.; Hsu, T.-L.; Wu, Y.-T.; Shen, C.-N.; Cheng, W.-C. Harnessing Natural-Product-Inspired Combinatorial Chemistry and Computation-Guided Synthesis to Develop N -Glycan Modulators as Anticancer Agents. Chem. Sci. 2022. 13, 6233–6243.
29. Jin, Z. C.; Kitajima, T.; Dong, W.; Huang, Y. F.; Ren, W. W.; Guan, F.; Chiba, Y.; Gao, X. D.; Fujita, M. Genetic Disruption of Multiple 1,2-Mannosidases Generates Mammalian Cells Producing Recombinant Proteins with High-Mannose–Type N-Glycans. J. Biol. Chem. 2018, 293, 5572–5584.
30. Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Polyhydroxylated alkaloids — natural occurrence and therapeutic applications. Phytochem. 2001, 56, 265-295.
31. Jacob, G. S.; Searle, G. D.; Louis, S. Glycosylation Inhibitors in Biology and Medicine. Curr. Opin. Struct. Biol. 1995, 5, 605-611.
32. Koyama, R.; Kano, Y.; Kikushima, K.; Mizutani, A.; Soeda, Y.; Miura, K.; Hirano, T.; Nishio, T.; Hakamata, W. A Novel Golgi Mannosidase Inhibitor: Molecular Design, Synthesis, Enzyme Inhibition, and Inhibition of Spheroid Formation. Bioorg. Med. Chem. 2020, 28, 115492.
33. Cheng, T. J. R.; Chan, T. H.; Tsou, E. L.; Chang, S. Y.; Yun, W. Y.; Yang, P. J.; Wu, Y. T.; Cheng, W. C. From Natural Product-Inspired Pyrrolidine Scaffolds to the Development of New Human Golgi α-Mannosidase II Inhibitors. Chem.: Asian J. 2013, 8, 2600–2604.
34. Tsou, E. L.; Yeh, Y. T.; Liang, P. H.; Cheng, W. C. A Convenient Approach toward the Synthesis of Enantiopure Isomers of DMDP and ADMDP. Tetrahedron. 2009, 65, 93–100.
35. Morrison, K. C.; Hergenrother, P. J. Natural Products as Starting Points for the Synthesis of Complex and Diverse Compounds. Nat. Prod. Rep. 2014, 31, 6–14.
36. Cheng, W. C.; Liu, W. J.; Hu, K. H.; Tan, Y. L.; Lin, Y. T.; Chen, W. A.; Lo, L. C. Rapid Synthesis of a Natural Product-Inspired Uridine Containing Library. ACS Comb. Sci. 2020, 22, 600–607.
37. Birch, A. M.; Birtles, S.; Buckett, L. K.; Kemmitt, P. D.; Smith, G. J.; Smith, T. J. D.; Turnbull, A. v.; Wang, S. J. Y. Discovery of a Potent, Selective, and Orally Efficacious Pyrimidinooxazinyl Bicyclooctaneacetic Acid Diacylglycerol Acyltransferase-1 Inhibitor. J. Med. Chem. 2009, 52, 1558–1568.
38. Klunda, T.; Hricovíni, M.; Šesták, S.; Kóňa, J.; Poláková, M. Selective Golgi α-Mannosidase II Inhibitors:N-Alkyl Substituted Pyrrolidines with a Basic Functional Group. New J. Chem. 2021, 45, 10940–10951.
39. Liao, H.-Y.; Wang, S.-C.; Ko, Y.-A.; Lin, K.-I.; Ma, C.; Cheng, T.-J. R.; Wong, C.-H. Chimeric Hemagglutinin Vaccine Elicits Broadly Protective CD4 and CD8 T Cell Responses against Multiple Influenza Strains and Subtypes. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 17757-17763.
40. Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M. V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, Death, and Autophagy in Cancer: NF-κB Turns up Everywhere. Cell Death Dis. 2020, 11, 210.
41. Xia, Y.; Shen, S.; Verma, I. M. NF-κB, an Active Player in Human Cancers. Cancer Immunol. Res. 2014, 2, 823–830.
42. Chauhan, A.; Islam, A.; Prakash, H.; Singh, S. Phytochemicals Targeting NF-κB Signaling: Potential Anti-Cancer Interventions. J. Pharm. Anal. 2021.
43. Birch, A. M.; Birtles, S.; Buckett, L. K.; Kemmitt, P. D.; Smith, G. J.; Smith, T. J. D.; Turnbull, A. v.; Wang, S. J. Y. Discovery of a Potent, Selective, and Orally Efficacious Pyrimidinooxazinyl Bicyclooctaneacetic Acid Diacylglycerol Acyltransferase-1 Inhibitor. J. Med. Chem. 2009, 52, 1558–1568.
校內:2027-08-07公開