| 研究生: | 徐毅玲 Hsu, Yi-Ling | 
|---|---|
| 論文名稱: | 顆粒性白血球製造氧活性中間產物的生理及病理性調控之研究 Physiological and Pathological Regulation of Granulocytes ROS Production | 
| 指導教授: | 謝奇璋 Shieh, Ki-Chiong | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology | 
| 論文出版年: | 2004 | 
| 畢業學年度: | 92 | 
| 語文別: | 中文 | 
| 論文頁數: | 79 | 
| 中文關鍵詞: | 黏著分子 、氧活性中間產物 、抗嗜中性球抗體 、嗜伊紅性白血球 | 
| 外文關鍵詞: | eosinophil, adhesion molecules, reactive oxygen species | 
| 相關次數: | 點閱:99 下載:1 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
  顆粒性白血球主要是以產生氧活性中間產物(ROS)來殺死入侵身體的微生物,這些ROS包含了superoxide、H2O2和ONOO-等。嗜伊紅性白血球 (Eosinophil;Eos)為顆粒性球的一員,主要參與第一型的的過敏反應(type I hypersensitivity)與寄生蟲的感染。嗜伊紅性白血球主要存在於某些發炎的上皮組織如呼吸道、腸胃道和泌尿道,其細胞質的顆粒中含有major basic protein、eosinophil-derived neutrotoxin、eosinophil peroxidase等蛋白質,這些蛋白對寄生蟲、腫瘤細胞和宿主細胞而言都是有毒性的,而嗜伊紅性白血球可以產生大量的ROS,甚至多於嗜中性白血球。嗜伊紅性白血球聚積在發炎組織是透過何種機制顯然是很複雜的,這需要許多不同細胞激素和趨化素的產生如IL-3、IL-5,RANTES來達到。近來的研究中指出ROS可以透過改變黏著分子(adhesion molecule)的表現與功能,而調控白血球的運送 (traffic)。
  為了要研究顆粒性白血球在發炎時,如何調控ROS的產生與細胞黏著,我們製備了一群對抗嗜伊紅性白血球表面分子的單株抗體並進行不同的功能試驗,我們分析了在這些抗體的刺激之下,嗜中性白血球與嗜伊紅性白血球的呼吸爆發 (respiratory burst)是否受到改變。此外,我們也測量這些抗體對於嗜伊紅性白血球的細胞株-HL60-Clone15黏著到VCAM-1與ICAM-1的影響。我們發現一個稱為8-7-D的抗體可以增加ROS的產生,並降低細胞黏著; 另外一個稱為7-1-D的抗體則可透過與ROS產生無關的方式增加細胞黏著,為了要尋找這兩個有功能的抗體可能結合的接受器(receptor)為何,我們將抗體和特殊beads連結(cross-link)做成affinity column,並以此column抓住可與抗體結合的蛋白,此外,我們也進行了免疫沉澱法。在8-7-D抗體的部分,我們發現其可與分子量約80kDa的分子結合,在進行mass spectrometer後,推斷可能是A disintegrin and metalloproteinase family(ADAM)或是CD44,這些研究將有助於釐清嗜伊紅性白血球表面分子,如何調控ROS的產生與細胞黏著。
  抗嗜中性球抗體 (Antineutrophil cytoplasmic antibody ; ANCA )出現於患有全身性血管炎的病患血清中,ANCA主要作用的兩個自體抗體為proteinase3(PR-3)與myeloperoxidase(MPO)。研究指出ANCA首先透過與嗜中性白血球表面的PR-3或MPO結合,促使嗜中性白血球活化並釋放許多發炎媒介物來致病,這些發炎媒介物如ROS對內皮細胞有很強的毒性,因而產生血管炎。此外,除了以抗體的F(ab’)片段與嗜中性白血球結合外,ANCA亦可以其Fc片段與嗜中性白血球的Fc receptor反應,尤其是Fc�RIIa。
  我們研究兩位血清中分別含有MPO-ANCA與PR-3 ANCA自體抗體的病人,對於嗜中性白血球活化的影響。首先,我們確定了兩種ANCA都能刺激呼吸爆發,接著,我們也發現ANCA的刺激可以增加嗜中性白血球黏著到ICAM-1與HUVEC,然而,如果先處理catalase將H2O2去除,那麼黏著上升的情況就會消失。這些結果顯示ANCA在嗜中性白血球黏著分子的功能調節上,扮演著角色,這將有助於了解ANCA在致病機轉上的角色。
  在第一部分的實驗中,我們製造一群對抗嗜伊紅性白血球的單株抗體,並且分析這群抗體在白血球黏著和製造ROS的影響。之後針對兩個具有功能的抗體,尋找其可能結合的分子,我們發現8-7-D抗體辨識的分子有可能為ADAM family或是CD44,之後需要更多的實驗來證明這點。而在第二部分的實驗中,我們則是探討病理性的抗體-ANCA對嗜中性白血球產生ROS與黏著的影響,我們發現ANCA可能藉由增加嗜中性白血球ROS產生,來改變嗜中性白血球的黏著。這些實驗將有助於更了解白血球如何調控ROS產生與黏著分子。
  The microbicidal activity of granulocytes depends on the generation of reactive oxygen species (ROS) such as H202 and superoxide anion. Eosinophils , a subpopulation of granulocytes, are implicated in immediate hypersensitivity and the responses to parasitic pathogens. Eosinophils are found in certain inflammatory epithelial tissues, such as respiratory, gastrointestinal, and genitourinary tracts.  Eosinophils contain specific granules which include major basic proteins, eosinophil- derived neurotoxin, and eosinophil peroxidase, and are potent in producing reactive oxygen species (ROS).  All of these are toxic to parasites, tumor cells, and hosts.  The mechanisms of eosinophil recruitment to inflammatory sites are apparently complex and include increased production of eosinphils by a variety of factor, such as IL-3, IL-5, and RANTES.  Recent investigations suggest that ROS may regulate leukocyte trafficking by modulating adhesion molecules.
  In order to study the regulation of ROS production and cell adhesion on granulocytes during inflammation, we prepared a panel of monoclonal antibodies against human eosinophils.  We first measured the respiratory burst of eosinophils and neutrophils stimulated by these mAbs.  The effect of these mAbs on HL60-clone15, a eosinophil-like cell line, adhesion to VCAM-1 and ICAM-1 were also measured.  We found that one mAb, 8-7-D, increased ROS production and decreased adhesion. We also found another antibody, 7-1-D, can increase cellular adhesion in a ROS independent manner.  In order to identify the specific receptors interacting with these functional antibodies, we made affinity column and perform immunoprecipitation assay.  These studies may facilitate the understanding of the eosinophil surface molecules in regulating cell adhesion and ROS production.
  Autoantibodies may contribute to the pathogenesis of human disease by disrupting normal regulation of ROS production and cellular adhesion. Antineutrophil cytoplasmic antibodies (ANCA) are present in the plasma of patients with systemic vasculitis such as Wegener’s granulomatosis (WG). The 2 major autoantigens for ANCA are proteinase 3(PR-3) and myeloperoxidase(MPO).  In vitro, the pathogenicity begins when ANCA binds to the MPO or PR-3 on the surface of neutrophils. Neutrophils are then activated and release inflammatory mediators. e.g. ROS, which is cytotoxicity to endothelial cells and can lead to vasculitis.  ANCA induced neutrophil activation involves not only binding of the antibodies via their F(ab’)2-fragments, but also interaction of their Fc-fragments with Fc-receptors on neutrophils, particularly with the Fc�RIIa-receptor. Affinity-purified ANCA can also induce monocytes to produce oxygen radical. 
  We investigate two patients who have MPO-ANCA and PR-3 ANCA respectively.  We used these two kinds of antibodies to study the activation of neutrophil.  We first confirmed that ANCA can increase neutrophil respirtory burst.  We also found that with ANCA stimulation, neutrophil adhesion to ICAM -1 and HUVEC increased.  But if we combine catalase in this adhesion experiment, the ANCA-mediated increase is abolished.  These results indicate that ANCA play a role in regulating neutrophil adhesion molecules.  
  In the first part, we prepared a panel of monoclonal antibodies against human eosinophils.  We measured the respiratory burst and adhesion of granulocytes stimulated by these mAbs.  We then identified the specific receptors interacting with two functional antibodies by affinity column and immunoprecipitation assay.  We found that 8-7-D may bind to ADAM family or CD44.  In the second part, we used ANCA to study the activation of neutrophils.  We found that ANCA may increase neutrophil adhesion in a ROS dependent manner.  These results may help us to unravel the physiological and pathogenic roles of leukocytes activation in human disease. 
1. Cluzel, M., Damon, M., Chanez, P., Bousquet, J., Crastes de Paulet, A., Michel, F.B., Godard, P. J. Allergy Clin. Immunol. 80:195-201 (1987)
2. Giancotti, F. G. And E. Ruoslahti. Integrin signaling. Science. 285: 1028-1-32 (1999)
3. Carlos, T. M.and J. M. Harlan. Leukocyte-endothelial adhesion molecule. Blood 84:2068-2101 (1994)
4. Baraio, B. M. NADPH oxidase: an update. Blood 93:1464-1476 (1999)
5. Dinaurer, M. C., E. A. Pierce, G. A. Bruns, J. T. Curnutte, and S. H.
Orkin. Human neutrophil cytochrome b light chain (p22-phox). Gene structure chromosomal location, and mutation in cytochrome-negative autosomal recessive chronic granulomatous disease. J.Clin.Invest. 86: 1729-1737 (1990)
6. Broide, D. H.,H. Hoffmanand, and P. Sriramarao. Genes that regulate eosinophilic inflammation. AM.J.Hum.Genet. 65:302-307 (1999)
7. van Koocyk Y, Figdor CG. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol. 12:542-547 (2000)
8. Tieming Zhao, Valerie Benard, Benjamin P. Bohl, and Gary M. Bokoch. The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophils. J Clin. Invest. 112: 1732-1740 (2003)
9. Paola Chiarugi, Giovambattista Pani, Elisa Giannoni, Letizia Taddei, Renata Colavitti, Giovanni Raugei, Mark Symons, Silvia Borrello, Tommaso Galeotti, and Giampietro Ramponi. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Bio. 161:933-944 (2003)
10. Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, Shah AM. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res. 90(2):143-50 (2002)
11. Takafuji, S., T. Ohtoshi, H. Takizawa, K. Tadokoro, and K. Ito. Eosinophil degranulation in the presence of bronchial epithelial cells. Effect of Cytokines and role of adhesion. J.Immunol. 156:3980-3985 (1996)
12. Ben-Smith A, Dove SK, Martin A, Wakelam MJ, Savage CO. Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fcgamma receptor ligation. Blood. 98(5):1448-55. (2001)
13. Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA. 87:4115-9
   (1990)
14. Ewert BH, Jennette JC, Falk RJ. Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells. Kidney Int. 41:375-83 (1992)
15. Wdidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD. Antinuetrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum.44:1698-706(2001)
16. Moynagh PN, Williams DC, O’Neill LA, Activation of NF-kappa B and induction of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 expression in human glial cells by IL-1. Modulation by antioxidants. J Immunol. 153:2681-90 (1994)
17. Laragione T, Bonetto V, Casoni F et al. Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Proc Natl Acad Sci USA. 100:14737-41 (2003)
18. Chan JR, Hyduk SJ, Cybulsky MI. Alpha 4 beta 1 integrin/VCAM-1 interaction activates alpha L beta 2 integrin-mediated adhesion to ICAM-1 in human T cells. J Immunol. 164:746-753 (2000)
19. Yamada Y, Izawa H, Ichihara S et al. Prediction of the risk of myocardial ingarction from polymorphisms in candidate genes. N Engl J Med. 347:1916-23 (2002)
20. H. Lee Tiffany, Ghalib Alkhatib, Christophe Combadiere, Edward A. Berger, and Philip M. Murphy. CC chemokine receptors 1 and 3 are differentially regulated by IL-5 during maturation of eosinophilic HL-60 cells. J.Immunol.160:1385-92 (1998)
21. Miyake K, Underhill CB, Lesley J, Kincade PW. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 172(1):69-75 (1990).
22. Nandi A, Estess P, Siegelman M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity. 20(4):455-65.
23. Clark, R. A. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 170 Suppl 2:S309-317 (1999)
24. Meager, A. Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growht Factor. 10:27-39 (1999)
25. Matsumoto, K., Sterbinsky, S. A., Bickel, C. A., Zhou, D. F., Kovach, N. L. and Bochner, B. S., Regulation of alpha 4 integrin-mediated adhesion of human eosinophils to fibronectin and vascular cell adhesion molecule-a. J. Allergy Clin. Immunol. 99:648-656 (1997)
26. Wardlaw, J. J., Molecular basis for selective eosinophil trafficking in asthma: a multistep paradigm. J. Allergy Clin. Immunol. 104:917-926 (1999)
27. Hynes, R. O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:11-25 (1992)
28. Leitinger B. Hogg N. From crystal clear ligand binding to designer I domains. Nat Struct Biol. 7:614-616 (2000)
29. Bertrand CP,Ponath PD. CCR3 blockade as a new therapy for asthma. Expert Opin Investig Drugs 9(1):43-52 (2000)
30. David J. Radford, Caroline O. S. Savage, and Gerard B. Nash. Treatment of rolling neutrophils with antineutrophil cytoplasmic  antibodies causes conversion to firm integrin-mediated adhesion.
   Arthritis Rheum 43:1337-1345 (2000)
31. Katoh S, Matsumoto N, Kawakita K, Tominaga A, Kincade PW, Matsukura S. A role for CD44 in an antigen-induced murine model of pulmonary eosinophilia. J Clin. Invest. 111(10):1563-70 (2003)
32. Smith CW, Rothlein R, Hughens BJ,Mariscalco MM,Rudloff HE, Schmalstieg FC et al. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendotheial migration. J Clin. Inst.82: 1746-56 (1988)
33. Plow EF, Haas TA, Zhang L. Loftus J. Smith JW. Ligand binding to integrins. J Biol Chem. 275:21785-21788 (2000)
34. Wein, M. and B.S. Bochner. Adhesion molecule antagonists: future therapies for allergic diseases? Eur. Respir. J. 6:1239-1242 (1993)
35. van Kooyk Y, Weder P, Heije K, Figdor CG. Extracellular Ca2+ modulates leukocyte function-associated antigen-1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J Cell Biol. 124:1061-1070 (1994)
36. Fourie, A. M., Coles, F., Moreno, V., and Karlsson, L. Catalytic activity of ADAM8, ADAM15 and MDC-L(ADAM28) on synthetic peptide substrates, and in ectodomain cleavage of CD23. J. Biol. Chem. 278, 30469-30477 (2003)