| 研究生: |
吳佳儒 Wu, Jia-Ru |
|---|---|
| 論文名稱: |
應用液相沉積法沉積氧化鋅奈米結構增強氮化鎵系列發光二極體發光亮度 Enhancement of Light Output Power for GaN-Based Light-Emitting Diodes with Liquid Phase Deposited ZnO Nanostructures |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 發光二極體 、液相沉積法 、氧化鋅 、氮化鎵 |
| 外文關鍵詞: | GaN, ZnO, Liquid Phase Deposition (LPD), Light-Emitting Diodes (LED) |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由液相沉積法使用硝酸鋅六水合物和四氨六甲圜生長溶液製備氧化鋅奈米結構已經論證。我們研究生長溶液濃度、沉積溫度和沉積時間等對氧化鋅奈米結構的成長參數。我們發現氧化鋅奈米柱的直徑和長度可以被控制。其直徑的最小尺寸可以到達50至60奈米,而長度則可以至600到800奈米之間的尺寸。我們透過X射線光電子能譜、能量散佈光譜儀、X光繞射儀來分析氧化鋅奈米結構的化學組成成分和元素鍵結,掃描電子顯微鏡及原子力顯微鏡則用來觀察薄膜的表面狀態。最後,我們實現液相沉積法的氧化鋅奈米結構層於粗化發光二極體的表面,並且增加其光發出效率。我們發現其發光效率於分別沉積三小時、五小時、七小時之下,分別增加12.57%、20.2%、16.9%。
ZnO nanostructures prepared by liquid phase deposition (LPD) method using a zinc nitrate hexahydrate (Zn(NO3)2‧6H2O) and hexamethylenetetramine(C6H12N4, HMT) solution were demonstrated. We investigated the growth parameters, such as solution concentration, deposition temperature, and growth time for ZnO nanostructures. We found that the diameter and length of the ZnO nanorods can be controlled. The minimum size was about 50~60 nm in diameter and 600~800nm in length. X-ray photoelectron spectroscopy (XPS), energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD) were used to analyze chemical composition. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used to study the surface of the LPD-ZnO. Finally, we demonstrated the application of the LPD-ZnO layers which roughened the LED surface and increased the light extraction efficiency. We found that the light output power of green GaN-based LED improved by about 12.57%, 20.2% and 16.9% for 3hours, 5hours and 7 hours deposition time compared with those without the LPD-ZnO structures. The best enhancement of the light output power is 29.2% for our ZnO nanostructure application.
[1] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277–279, June 1999.
[2] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars and U. K. Mishra, “High breakdown GaN HEMTs with overlapping gate structure,” IEEE Electron Device Lett., vol. 21, pp. 421–423, Sept. 2000.
[3] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W.G. Wu, S. G. Thomas and K. L. Wang “High performance AlGaN/GaN HEMT with improved Ohmic contacts,” Electron Lett., vol. 34, pp. 2354–2356, Nov. 1998.
[4] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., Vol. 64, pp. 1987-1989, March 1994.
[5] M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars and J. S. Speck, “Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 84, pp.1281-1283, 2004.
[6] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, 1989.
[7] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., Vol. 31, pp.L139-L142, 1992.
[8] Y. Chen, D. Bagnell, and T. Yao, “ZnO as a novel photonic material for the UV region,” Mater. Sci. Eng. B, Vol. 75, pp.190-198, 2000.
[9] P. Klason, P. Steegstra, O. Nur, Q. H. Hu, M. M. Rahman, M. Willander, and R. Turan, “Characterization of white light emitting diodes based on ZnO nanostructures grown on p-Si,” European Nano Systems Comference, Paris, France, December 3-4, 2007.
[10] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors," J. Cryst. Growth, Vol. 225, pp.110-113, 2001.
[11] M. H. Koch, P. Y. Timbrell and R. N. Lamb, “The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides,” Semicond. Sci. Technol., Vol. 10, pp.1523-1527, 1995.
[12] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01 2) sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 85 pp. 2595-2602, 1999..
[13] L. F. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff and M. Coulter, “ZnO nanowires formed on tungsten substrates and their electron field emission properties,” Appl. Phys. Lett., Vol. 82, pp.1096-1098, 2003.
[14] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini and J. T. Fourkas, “Field-emission studies on thin films of zinc oxide nanowires,” Appl. Phys. Lett., Vol. 83, pp. 4821-4823, 2003.
[15] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science 50, pp. 293–340, 2005
[16] J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Cho, H. S. Han and S. Kim, “ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders,” J. Cryst. Growth, Vol. 254, pp. 423-431, 2003.
[17] M. Shiloh and J. Gutman, “Growth of ZnO single crystals by chemical vapour transport,” J. Cryst. Growth Vol.11, pp. 105~109, 1971.
[18] D. F. Croxall, R. C. C. Ward, C. A. Wallace, and R. C. Kell, “Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection,” J. Cryst. Growth Vol. 22, pp.117-124, 1974.
[19] Y. K. Tseng, C. T. Chia, C. Y. Tsay, L. J. Lin, H. M. Cheng, C. Y. Kwo and I. C. Chen, “Growth of Epitaxial Needlelike ZnO Nanowires on GaN Films,” J. Electrochem. Soc. Vol. 152, pp. G95-G98, 2005.
[20] B. Mokili, Y. Charreire, R. Cortes, D. Lincot, “Extended X-ray absorption fine structure studies of zinc hydroxo-sulphide thin films chemically deposited from aqueous solution,” Thin Solid Film, Vol. 288, pp. 21-28, 1996.
[21] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter, Vol. 16. pp. R829–R858, 2004.
[22] J. Chen, Z. Feng, P. Ying, M. Li, B. Han and C. Li, “The visible luminescent characteristics of ZnO supported on SiO2 powder,” Phys. Chem. Chem. Phys., Vol. 6, pp. 4473-4479, 2004.
[23] C. Bekeny, T. Voss, H. Gafsi, and J. Gutowski, “Origin of the near-band-edge photoluminescence emission in aqueous chemically grown ZnO nanorods,” J. Appl. Phys., Vol. 100, pp.104317-1-104317-4, 2006.
[24] H. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Commun., Vol. 23, pp. 815-819, 1977.
[25] O. GARCIA-MARTINEZ, R. M. ROJAS, E. VILA, J. L. ARTIN DE VIDALES , “Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts,” Solid state ionic, Vol. 63, pp. 442-449, 1993.
[26] C. Chen, M. Dutta, and M. A. Stroscio, “Confined and interface phonon modes in GaN/ZnO heterostructures,” J. Appl. Phys., Vol. 95, pp. 2540~2546, 2004.
[27] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Satkins, A. E. Curzon, M. L. W. Thewalt, N. Matine and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 73, pp. 2799~2801, 1998.
[28] D. A. Yarekha, A. Vicet, A. Perona, G. Glastre, B. Fraisse, Y. Rouillard, E. M. Skouri, G. Boissier, P. Grech, A. Joullié, C. Alibert and A. N. Baranov, “High efficiency GaInSbAs/GaSb type-II quantum well continuous wave lasers,” Emicond. Sci. Technol., Vol. 15, pp. 390~394, 2000.
[29] T. K. Subramanyam, B. S. Naidu, and S. Uthanna, “Physical Properties of Zinc Oxide Films Prepared by dc Reactive Magnetron Sputtering at Different Sputtering Pressures,” Cryst. Res. Technol., Vol. 35, pp. 1193~1203, 2000.
[30] N. Kawamoto, M. Fujita, T. Tatsumi and Y. Horikoshi, “Molecular Beam Epitaxial Growth of ZnO on Si Substrate Using Ozone as an Oxygen Source,” Jpn. J. Appl. Phys., Vol. 42, pp. 67-70, 2003.
[31] H. Mikhelashvili and G. Eisensteina, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” J. Appl. Phys., vol. 89, pp. 3256-3259, 2001.
[32] Y. Tak and K. Yong “Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method,” J. Phys. Chem. B, Vol. 109, pp. 19263-19269, 2005.
[33] B. Postels, H. H. Wehmann, A. Bakin, M. Kreye, D. Fuhrmann, J. Blaesing, A. Hangleiter, A. Krost and A. Waag, “Controlled low-temperature fabrication of ZnO nanopillars with a wet-chemical approach,” Nanotechnology Vol. 18, pp. 1-7 ,2007.
[34] E. Fred Schubert, Light-Emitting Diodes 2nd, Cambridge University Press, pp. 86-97, 2006.
[35] S. Illek, U. Jacob, A. Plossol, P. Stauss, K. Streubel, W. Wegleiter and R. Wirth, “Buried micro-reflectors boost performance of AlGaInP LEDs,” Compound semicond., Vol. 8, pp. 39-42, 2002.
[36] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum axide,” Chem. Mater., Vol. 10, pp. 2470-2480, 1998.
[37] S. Nakamura, T. Mukai and M. Senoh, “P-GaN/N-InGaN/N-GaN Double- heterostructures Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys., Vol. 32, pp. L8-L11, 1993.
[38] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., vol. 86, pp. 221101-1~221101-3, 2005.
[39] Neamen, Semiconductor Physics and Devices Basic Principles 3rd, McGraw-Hill Higher Education, 2003.
[40] H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita and H. Shiomo, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys., Vol. 44, pp. 7414–7417, 2005.
[41] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu and C. C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface,” Mater. Sci. Eng. B, Vol. 112, pp. 10-13, 2004.
[42] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, pp. 855-857, 2004.
[43] B. Postels, H. H. Wehmann, A. Bakin, M. Kreye, D. Fuhrmann, J. Blaesing, A. Hangleiter, A. Krost and A. Waag, “Controlled low-temperature fabrication of ZnO nanopillars with a wet-chemical approach,” Nanotechnology, Vol. 18, pp. 195602-1~195602-7, 2007.
[44] H. M. Cheng, H. C. Hsu, S. Yang, C. Y. Wu, Y. C. Lee, L. J. Lin and W. F. Hsieh “The substrate effect on the in-plane orientation of vertically well-aligned ZnO nanorods grown on ZnO buffer layers,” Nanotechnology, Vol. 16, pp. 2882–2886, 2005.
[45] D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis “pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth,” thin solid film, Vol. 505, pp.8764-8767, 2007.
[46] A. Trinchi, W. Wlodarski, S. Santucci, D. Di. Claudio, M. Passacantando, C. Cantalini, B. Rout, S. J. Ippolito, K. Kalantar-Zadeh and G. Sberveglieri, “Microstructural Characterisation of RF Magnetron Sputtered ZnO Thin Films on SiC,” Solid State Phenomena, Vols. 99~100, pp. 123-126, 2004.
[47] B. Zhao, H. Yang, G. Du, G. Miao, Y. Zhang, Z. Gao, T. Yang, J. Wang, W. Li, Y. Ma, X. Yang, B. Liu, D. Liu, and X. Fang, “High-quality ZnO/GaN/Al2O3 heteroepitaxial structure grown by LP–MOCVD,” J. Crystal Growth, Vol. 258, pp.130–134, 2003.