簡易檢索 / 詳目顯示

研究生: 蘇威仁
Su, Wei-Jen
論文名稱: 複合型光生物反應器之設計及微藻培養之研究
Design of a Hybrid Type Photobioreactor for Cultivation of Microalgae
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 85
中文關鍵詞: 微藻複合型光生物反應器生物質量混合重複批次培養
外文關鍵詞: Microalgae, hybrid type photobioreactor, biomass, mixing, repeated batch culture
相關次數: 點閱:159下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微藻可經由光合作用固定大氣中的二氧化碳並轉化生成生物質,且微藻生長快速,用於環境固碳同時作為生質能源的生產者,是相當具有發展潛力。現今大規模培養藻類主要是以開放式系統為主,其中平面培養池最為普遍。但其二氧化碳利用效能較低;且當微藻濃度變高時,其遮蔽效應變大,造成微藻無法有效率利用光能,使得其培養效率較低。因此,本研究為提高二氧化碳利用效能,使用複合型光生物反應器以增加碳源質傳效率,並於開放式培養槽中放置透明中空矩形槽,以增加培養系統中的光照面積,改變培養系統內的光分佈情況。藉由上述之光生物反應器設計以提高微藻的二氧化碳利用效率與光使用效率,進而提升微藻產率。
    本研究結果顯示,於八天連續光照批次培養後,複合型培養系統能有效的提高開放式平面培養池的碳使用效率;插置透明矩形槽可大幅增加微藻的生長速率,使微藻培養能較快到達生長停滯期,並獲得較高的總藻體濃度為0.991 g L-1,此藻體濃度高於一般開放式培養槽約41%。因此,本光生物反應器之設計能有效的改善微藻培養的環境,並提高微藻的產能。另外,研究中為改善藻體沉澱情形,於培養槽中增設間歇性曝氣系統,此系統可透過在槽內提供短暫曝氣的方式,以達到混合的作用。於12小時:12小時(光:暗)光照週期的條件下,比較不同的曝氣操作策略,其結果顯示只於光照期間曝氣之系統,在八天批次培養後,能獲得更高的總藻體濃度與藻體產率(0.816 g L-1與0.089 g L-1 d-1),且相較於未曝氣之藻體產率可增加約46%。此結果顯示於系統內提供短暫的混合作用能有效的增加微藻產量。關於小球藻培養策略上之結果,重複批次培養系統中,在12小時:12小時光照週期與初始尿素濃度為0.05 g L-1的環境下培養八天,以15%置換比例(補充至0.015 g L-1尿素濃度)培養小球藻,可獲得最高的藻體產率為0.086 g L-1 d-1,與批次培養方式相比其產率增加約31%。

    Microalgae have received much attention as renewable energy resources, since the photoautotrophic mechanism can convert the atmospheric carbon dioxide into biomass. Open pond is a general photobioreactor to cultivate microalgae. Nevertheless, the drawback of this system is low carbon dioxide utilization efficiency (CUE), and the increase of microalgae concentration decreases the light penetration in the cultural system. These two reasons result low culture efficiency in open pond system. In this study, the new design of photobioreactor is an open tank containing transparent rectangular chambers (TRCs) combined with bubble column. The hybrid type photobioreactor was developed to improve the photosynthetic efficiency of microalgae and carbon dioxide mass transfer efficiency in the cultural system.
    In this study, it was prove that the photobioreactor improved utilization efficiencies of carbon dioxide and light energy for microalgae growth. The biomass concentration of Chlorella sp. reached 0.991 g L-1 on the 8th day. The total biomass concentration obtained was 41% more than open tank system. Besides, the purpose of the intermittence aeration was set up inside the tank in order to enhance the mixing effect in the cultural system. The system with intermittence aeration under the light period resulted in high biomass concentration and productivity (0.816 g L-1; 0.089 g L-1 d-1), and the total biomass productivity was 46% more than that without intermittence aeration system. This result proved that mixing effect can increase microalgae growth in the cultural system. In repeated batch cultivation, the highest biomass productivity was carried out by harvesting the culture with 15% renewal rate and renewing urea at 0.015 g L-1 each time when the cultivation achieved the early stationary phase. After eight day cultivation, the biomass productivity of 0.086 g L-1 d-1 in the repeated batch culture with 15% renewal rate was the highest in comparison with those in the batch and repeated batch cultivations.

    摘要I AbstractIII 誌謝V 目錄VI 表目錄X 圖目錄XI 第一章 緒論1 1-1 前言1 1-2 研究動機與目的4 第二章 文獻回顧5 2-1 藻類簡介5 2-2 微藻生理介紹7 2-2-1 光合作用7 2-2-2 微藻產油代謝過程9 2-2-3 影響微藻生長的調控因子13 2-3 微藻培養介紹18 2-3-1 培養方式18 2-3-2 培養系統20 2-3-3 微藻培養策略23 2-4 二氧化碳吸收裝置介紹24 2-4-1 二氧化碳傳送之途徑與機制24 2-4-2 吸收裝置與培養槽的結合26 2-5 透明中空矩形槽裝置介紹28 第三章 實驗材料與方法30 3-1 藻種30 3-2 培養基組成31 3-3 實驗儀器與設備33 3-3-1 培養系統33 3-3-2 分析系統34 3-4 微藻培養系統35 3-4-1 矩形光生物反應器35 3-4-2 複合型光生物反應器36 3-4-3 插置透明中空矩形槽之複合型光生物反應器38 3-5 培養方法40 3-5-1 種源保存與繼代培養40 3-5-2 前培養40 3-5-3 主培養41 3-5-4 實驗流程41 3-6 分析方法42 3-6-1 光強度測定42 3-6-2 微藻濃度分析42 3-6-2-1 微藻乾藻重分析42 3-6-2-2 分光光度計測定法43 3-6-3 尿素濃度分析45 3-6-4 油脂分析46 第四章 實驗結果與討論50 4-1 光生物反應器設計50 4-2 小球藻培養條件之探討56 4-2-1 光照條件對小球藻生長與油脂累積之影響56 4-2-2 不同間歇性曝氣環境對小球藻生長之影響61 4-2-3 不同氮源濃度對小球藻生長與油脂累積之影響64 4-3 重複批次培養策略之探討67 4-3-1 置換比例10%對小球藻生長與油脂累積之影響68 4-3-2 置換比例15%對小球藻生長與油脂累積之影響70 4-3-3 置換比例20%對小球藻生長與油脂累積之影響72 4-3-4 不同置換比例作為重複批次培養策略之比較74 第五章 結論與未來展望76 5-1 結論76 5-2 未來展望77 參考文獻78 自述85

    Apt, K. E. and Behrens, P. W. (1999). "Commercial developments in microalgal biotechnology." Journal of Phycology 35(2): 215-226.
    Bligh E.G. and Dyer W.J. (1959). "A rapid method of total lipid extraction and purification." Canadian journal of biochemistry and physiology 37(8): 911-917.
    Borowitzka, M. A. (1999). "Commercial production of microalgae: ponds, tanks, tubes and fermenters." Journal of Biotechnology 70(1-3): 313-321.
    Butler, W. R., Calaman, J. J., et al. (1996). "Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle." Journal of Animal Science 74(4): 858-865.
    Chen, F. (1996). "High cell density culture of microalgae in heterotrophic growth." Trends in Biotechnology 14(11): 421-426.
    Chisti, Y. (2007). "Biodiesel from microalgae." Biotechnology Advances 25(3): 294-306.
    Chuecas, L. and Riley, J. P. (1969). "Component fatty acids of the total lipids of some marine phytoplankton." Journal of the Marine Biological Association of the United Kingdom 49(01): 97-116.
    Connemann, J. and Fischer, J. (1999). "Biodiesel quality Y2K and market experiences with FAME, CEN/TC 19 Automotive Fuels Millennium Symposion, Amsterdam." The Netherlands: 25-26.
    Eriksen, N. (2008). "The technology of microalgal culturing." Biotechnology Letters 30(9): 1525-1536.
    Fábregas, J., García, D., et al. (1998). "Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity." Journal of Fermentation and Bioengineering 86(5): 477-481.
    Gouveia, L. and Oliveira, A. (2009). "Microalgae as a raw material for biofuels production." Journal of Industrial Microbiology & Biotechnology 36(2): 269-274.
    Grobbelaar, J. (1994). "Turbulence in mass algal cultures and the role of light/dark fluctuations." Journal of Applied Phycology 6(3): 331-335.
    Hotos, G. N. (2003). "Growth, filtration and ingestion rate of the rotifer Brachionus plicatilis fed with large (Asteromonas gracilis) and small (Chlorella sp.) celled algal species." Aquaculture Research 34(10): 793-802.
    Hsieh, C.-H. and Wu, W.-T. (2009). "A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae." Biochemical Engineering Journal 46(3): 300-305.
    Hu, Q. (2007). Environmental Effects on Cell Composition. Handbook of Microalgal Culture, Blackwell Publishing Ltd: 83-94.
    Hu, Q., Sommerfeld, M., et al. (2008). "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances." The Plant Journal 54(4): 621-639.
    Huang, G., Chen, F., et al. (2010). "Biodiesel production by microalgal biotechnology." Applied Energy 87(1): 38-46.
    Illman, A. M., Scragg, A. H., et al. (2000). "Increase in Chlorella strains calorific values when grown in low nitrogen medium." Enzyme and Microbial Technology 27(8): 631-635.
    Ishihara, M., Shiroma, T., et al. (2006). "Purification and characterization of extracellular cysteine protease inhibitor, ECPI-2, from Chlorella sp." Journal of Bioscience and Bioengineering 101(2): 166-171.
    Jacob-Lopes, E., Scoparo, C. H. G., et al. (2009). "Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors." Chemical Engineering and Processing: Process Intensification 48(1): 306-310.
    Jin, H.-F., Lim, B.-R., et al. (2006). "Influence of Nitrate Feeding on Carbon Dioxide Fixation by Microalgae." Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 41(12): 2813 - 2824.
    Kamiya, A. and Kowallik, W. (1987). "Photoinhibition of Glucose Uptake in Chlorella." Plant and Cell Physiology 28(4): 611-619.
    Lee, Y.-K. (1997). "Commercial production of microalgae in the Asia-Pacific rim." Journal of Applied Phycology 9(5): 403-411.
    Li, Y., Horsman, M., et al. (2008). "Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans." Applied Microbiology and Biotechnology 81(4): 629-636.
    Macintyre, H. L., Cullen, J.J. (2005). "Using cultures to investigate the physiological ecology of microalgae, In: Andersen, R., (ed) Algal culturing techniques." Elsevier/Academic Press: 287-326.
    Masojídek, J., Koblížek, M., et al. (2007). Photosynthesis in Microalgae. Handbook of Microalgal Culture, Blackwell Publishing Ltd: 20-39.
    Molina Grima, E., Belarbi, E. H., et al. (2003). "Recovery of microalgal biomass and metabolites: process options and economics." Biotechnology Advances 20(7-8): 491-515.
    Ogbonna, J. C. and Tanaka, H. (1996). "Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa." Journal of Fermentation and Bioengineering 82(6): 558-564.
    Ogbonna, J. C. and Tanaka, H. (2000). "Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors." Journal of Applied Phycology 12(3): 207-218.
    Otero, A., García, D., et al. (1997). "Manipulation of the biochemical composition of the eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures." Biotechnology and Applied Biochemistry 26(3): 171-177.
    Piorreck, M., Baasch, K.-H., et al. (1984). "Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes." Phytochemistry 23(2): 207-216.
    Pulz (2001). "Photobioreactors: production systems for phototrophic microorganisms." Applied Microbiology and Biotechnology 57(3): 287-293.
    Qiang, H., Faiman, D., et al. (1998). "Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors." Journal of Fermentation and Bioengineering 85(2): 230-236.
    Radmann, E. M., Reinehr, C. O., et al. (2007). "Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds." Aquaculture 265(1-4): 118-126.
    Reinehr, C. and Costa, J. (2006). "Repeated batch cultivation of the microalga Spirulina platensis." World Journal of Microbiology and Biotechnology 22(9): 937-943.
    Reitan, K. I., Rainuzzo, J. R., et al. (1994). "Effect of nutrient limitation on fatty acid and lipid content of marine microalgae1." Journal of Phycology 30(6): 972-979.
    Renaud, S., Parry, D., et al. (1991). "Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata; for use in tropical aquaculture." Journal of Applied Phycology 3(1): 43-53.
    Renaud, S. M., Thinh, L.-V., et al. (2002). "Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures." Aquaculture 211(1-4): 195-214.
    Renaud, S. M., Zhou, H. C., et al. (1995). "Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO)." Journal of Applied Phycology 7(6): 595-602.
    Richmond, A. (2004). "Principles for attaining maximal microalgal productivity in photobioreactors: an overview." Hydrobiologia 512(1): 33-37.
    Sato, T., Usui, S., et al. (2006). "Invention of outdoor closed type photobioreactor for microalgae." Energy Conversion and Management 47(6): 791-799.
    Shipton, C. A. and Barber, J. (1994). "In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins." European Journal of Biochemistry 220(3): 801-808.
    Sobczuk, T. M., Camacho, F. G., et al. (2000). "Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors." Biotechnology and Bioengineering 67(4): 465-475.
    Spolaore, P., Joannis-Cassan, C., et al. (2006). "Commercial applications of microalgae." Journal of Bioscience and Bioengineering 101(2): 87-96.
    Suen, Y., Hubbard, J. S., et al. (1987). "Total lipid production of the green alga nannochloropsis sp. qii under different nitrogen regimes1." Journal of Phycology 23: 289-296.
    Suh, I. S. and Lee, S. B. (2001). "Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor." Journal of Applied Phycology 13(4): 381-388.
    Sukenik, A. and Livne, A. (1991). "Variations in Lipid and Fatty Acid Content in Relation to Acetyl CoA Carboxylase in the Marine Prymnesiophyte Isochrysis galbana." Plant and Cell Physiology 32(3): 371-378.
    Takagi, M., Karseno, et al. (2006). "Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells." The Society for Biotechnology, Japan 101(3): 223-226.
    Takagi, M., Watanabe, K., et al. (2000). "Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999." Applied Microbiology and Biotechnology 54(1): 112-117.
    Turpin, D. H. (1991). "Effects of inorganic n availability on algal photosynthesis and carbon metabolism." Journal of Phycology 27(1): 14-20.
    Watanabe, Y. and Saiki, H. (1997). "Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas." Energy Conversion and Management 38(Supplement 1): S499-S503.
    Xu, X.-Q. and Beardall, J. (1997). "Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake." Phytochemistry 45(4): 655-658.
    Yalcin, I., Hicsasmaz, Z., et al. (1994). "Characterization of the Extracellular Polysaccharide from Freshwater Microalgae Chlorella sp." Lebensmittel-Wissenschaft und-Technologie 27(2): 158-165.
    江永棉,王偉龍和黃淑芬 (1990). "台灣海藻簡介." 台灣:台灣省立博物館出版部.
    吳文騰 (2003). "生物產業技術概論." 新竹:國立清華大學出版社.
    謝誌鴻 (2009). "微藻培養與微藻油脂生產之研究.": 台灣:國立成功大學.
    黃鈺珊 (2010). "複合型光生物反應器之系統開發及其在小球藻培養上之應用." 台灣:國立成功大學.

    下載圖示 校內:2012-07-22公開
    校外:2012-07-22公開
    QR CODE