| 研究生: |
張家輝 Chang, Chia-Hui |
|---|---|
| 論文名稱: |
水產養殖曝氧機之設計與驗証 Aerator Design and Test |
| 指導教授: |
周榮華
Chou, Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 文氏管原理 、離心力原理 、曝氣溶氧 、標準曝氣效率 、水產養殖 |
| 外文關鍵詞: | Venturi tube, centrifugal force, Dissolved oxygenStandard Aeration Efficiency, aquafarm |
| 相關次數: | 點閱:109 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
曝氣溶氧是水產養殖業提供水中生物氧氣最重要的方法。本實驗利用伯努利定理(Bernoulli Principle)之文氏管原理(Venturi tube)及離心力原理(centrifugal force),設計出兩歀(Ⅰ型、Ⅱ型)高溶氧曝氣機。
首先根據理論提出不同的設計方案,經實驗驗証及修正共設計出兩歀4種不同的曝氣機,分別為Ⅰ型-A、Ⅰ型-B、Ⅰ型-C曝氣機及Ⅱ型曝氣機。實驗程序首先對原始設計及誤差實施修正以得較好的設計方案,然後進行設備規格化以明確訂定設備的適用性及範疇。
經實驗規格化証實,Ⅰ型-A曝氣機標準曝氣效率(SAE)為8.78(kgO₂/ (hr•kw))、Ⅰ型-B曝氣機標準曝氣效率為14.77(kgO₂/ (hr•kw))、Ⅰ型-C曝氣機標準曝氣效率為5.21(kgO₂/ (hr•kw))及Ⅱ型曝氣機標準曝氣效率為32.93(kgO₂/ (hr•kw)),均優於目前最常使用的曝氣水車PWA(其SAE為0. 91kgO₂/ (hr•kw))。本設備可以提供一個高溶氧曝氣環境,不僅對有機物呼吸的新陳代謝有高效率的助益,亦可改善水質環境及節省耗電成本。
Abstract
Dissolved oxygen(DO) of aeration which provides oxygen for fish is the most important oxygen-providing method for aquafarm .This research makes use of Venturi tube (Bernoulli Principle) and centrifugal force to design two kinds of high DO aerators which are referred to as typeⅠ-A, typeⅠ-B, typeⅠ-C and type Ⅱ.
This design process includes prototype design, validation, improvement and finally standardization of the aerators.
After improvements ,the test results show that the Standard Aeration Efficiency (SAE) of typeⅠ-A,Ⅰ-B,Ⅰ-C and Ⅱ are 8.78(kgO₂/ (hr•kw)), 14.77(kgO₂/ (hr•kw)), 5.21(kgO₂/ (hr•kw)), and 32.94 (kgO₂/ (hr•kw)) respectively. All of the SAEs are better than that of the Paddle Wheel Aerator (PWA) commonly used by fishery and has SAE of 0.91(kgO₂/ (hr•kw)).
These kinds of aerators do not only clearly provide high DO for the aquafarm environment, but also consume less energy for electricity and less cost for manufacturing.
參考文獻
1.United Nations Environment Progtamme, 2011.
2.郭平巧,養殖池水車配置數值模擬研究,國立成功大學碩士論文, 2009.
3.楊振民,進階水產養殖手冊,水產出版社, 2004.
4.B. G. Kyle,Chemical and Process Thermodynamics, 3rd
ed.,1927.
5.行政院環保署,環境水質「溶氧過飽和」現象說明,2010.
6.李龍雄,水產養殖學 ,前程出版社,p.72,2007.
7. Lawrence K. Wang, Norman C. Pereira, Yung-
Tse.Hung,Biological Treatment Processes,Handbook of
Environmental Engineering Vol.8,Ch.5,2009.
8.C.J.Geankoplis,Transport Processes and Unit
Operations,3rded.,Ch7, 1995.
9.W.K.Lewis and W.G. Whiteman,Industrial Engineering,
pp.26-1215,1924.
10.W.G.Whiteman,Chem.Metallurg Engineering,pp.29-146,1923.
11.W.F.Smith,Foundations of Materials Science and
Engineering 3rd., McGraw-Hill,2004.
12.R.Higbie, The Rate of Absorption of a Pure Gas into a
Still Liquid during Short Periods of Exposure,
Transaction ,American Institute of Chemical
Engineering, Vol 35,pp.36–60, 1935.
13.Danckwerts, P.V., Significance of liquid-film
coefficients in gas absorption, Ind Eng Chem, 43: 1460–
1467, 1951.
14.McGraw-Hill Dictionary of Scientific and Technical
Terms,6th ed., published by The McGraw-Hill Companies,
Inc.,1993.
15.International Union of Pure and Applied Chemistry,
Quantities, Units and Symbols in Physical
Chemistry,2th ed., Oxford: Blackwell Science,1993.
16.T.K.Sherwood and R.L.Pigford,Absorption and Extraction,
McGraw-Hill,New York,1952.
17.W.E.Dobbins,Biological Treatment of Sewage and
Industrial Wastes,Vol.1,Reinhold, New York,1956.
18.W.C.Boyle, Workshop Toward an Oxygen Transfer Standard.
EPA-600/9-78-021; U.S.EPA:Cincinnati,Ohio,1979.
19.W.C.Boyle , Workshop in Aeration System Design,
Testing,Operation and Control.EPA-600/9-85-005;U.S.
EPA: Cincinnati, Ohio,1985.
20.ASCE Standard Measurement of Oxygen Transfer in Water,
New York,1992.
21.W.C.Boyle ,Pitfalls in Parameter Estimation for Oxygen
Transfer Data,J. Environment Engineering, Div.ASCE
pp. 100- 391 ,1974.
22.J.R.Stukenberg , Water Poll Control Fed.pp.49-66,1977.
23.C.Scaccia and C.K.Lee,Large Scale Mass Transfer
Evaluation Tecnniques for Aeration Systems:A Critical
Review,50th Annual Conference,Water Pollution Control
Federation, Philadelphia, 1977.
24.方煒,種苗生產自動化,行政院農業委員會技術專輯第三期,第98008
號,1998.
25.Committee on Sanitary Engineering Research of the
Sanitary Engineering Division J.San.Eng.,
Div.Proc.ASCE86,No.5A4,p. 41,1960.
26.R.W.Schneiter and W.J.Grenney,Temperature Corrections
to Rate Coefficients,J.Environment Engineering
Div,ASCE.,109,pp.661-667 ,1983.
27.K.L.Elmore ,Div.Proc.ASCE87,No.SA6,p. 59,1961.
28.Manual of Practice for Water Pollution Control.
Aeration of Waste Water Treatment Process,Water
Environment Alexandria, Va,.and ASCE,New york,1988.
29.B.Lakin and M.B.Salzman,Subsurface Aeration
Evaluation ,1982.
30.M. K.Stenstrom and R.G Gilbert, Effects of Alpha, Beta,
and Theta Factor upon The Design, Specification and
Operation of Aeration Systems. Water Research,15,pp.643- 654 ,1981.
31.USEPA,Design Manual- Fine Pore Aeration Systems,Center
forEnvironmental Research, Cincinnati, Ohio,1989.
32.Metcalf & Eddy,Inc., Wastewater Engineering: Treatment
Disposal Reuse 3rd ed.,1991.
33.C.E.Boyd and.B.J. Watten,Aeration Systems in
Aquaculture. CRC Critical Reviews in Aquatic
Sciences,1,pp.425-472,1989.
34.E.L.,Peterson, Observations of PonHydrodynamics,
Aquaculture Engineering,Vol.21,pp.247-269,2000.
35.蔡榮鋒,,巡弋式曝氣設備-水渀渀 W200,中華民國發明I268758 、
I257878 號, 2009.
36.葉曉娟, 簡易式微細氣泡產生裝置規格化研發與應用研究,台灣大
學環工所碩士論文,2006.
37.林志軒,利用低造價湧升柱改善水體體質之效率評估與應用研究,
台灣大學環工所碩士論文,2007.
38. Munson, Bruce Roy, Fundamentals of Fluid Mechanics 4th
ed,2008.
39. 行政院環保署,環檢所公告標準方法NIEA W421.57C,