簡易檢索 / 詳目顯示

研究生: 周盈志
Chou, Ying-Chih
論文名稱: 電場輔助熱鎢絲化學氣相低溫沉積奈米碳化矽薄膜雙層通道薄膜電晶體之研製
The Study of Nanocrystalline Silicon Carbide Double-Channel Thin Film Transistor Prepared by Bias-assisted Hot-Wire Chemical Vapor Deposition
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 電場輔助碳化矽雙層通道薄膜電晶體
外文關鍵詞: BAHWCVD, TFT, SiC, double channel
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用具有高沉積速率與能提供大量氫自由基特性的電場輔助熱鎢絲化學氣相低溫沉積法(Bias-assisted HWCVD, BAHWCVD),首次於負(N)型(100)矽基板上使用甲烷、矽甲烷與氫氣成長奈米碳化矽雙層通道薄膜電晶體。吾人利用FTIR、Raman量測原子間的鍵結、XRD量測薄膜結晶、SEM與AFM觀察表面結構與粗糙度、ESCA測量薄膜中矽原子與碳原子之含量。利用電場輔助所沉積者為非晶碳化矽,具有較高電阻率故用來作為上通道層以降低薄膜電晶體的off-current。下通道主要作為電晶體導通時的路徑,故使用具有較高導電度的奈米碳化矽以增加on-current。藉由雙層通道的設計可以同時降低off-current及提升開關電流比。
    實驗結果顯示,薄膜中矽原子與碳原子的比例、鎢絲溫度與基板偏壓對於影響薄膜結構有顯著之影響。且使用非晶碳化矽與奈米碳化矽的雙層通道薄膜電晶體具有比單層奈米碳化矽通道薄膜電晶體較低之暗電流(9.2×10-10 A)與較高開關電流比(1.38×104)。又雙層通道薄膜電晶體場效遷移率為1.13 cm2/Vs也優於已發表的多晶碳化矽薄膜電晶體的0.02 cm2/Vs與多晶矽薄膜電晶體的1.05 cm2/Vs。

    The nano-crystalline silicon carbide thin film transistors (nc-SiC TFTs) prepared by a bias-assisted hot-wire chemical vapor deposition (HWCVD) system are investigated in details. The nc-SiC thin films were deposited on Si substrates using CH4, SiH4, and H2 gas mixture. We use FTIR, Raman, XRD, AFM, SEM, and ESCA for bond structure measurement, analyzing crystallinity, examination of surface roughness and morphology, and investigation of carbon atomic concentration in the film, respectively.
    The nc-SiC TFTs are designed with an higher resistivity amorphous layer deposited by the bias-assisted HWCVD for the top channel layer; while the layer deposited by the system without the DC bias has a high conductivity nano structure as the bottom channel. As a result, the developed double-channel nc-SiC TFT has lower off-current (9.2×10-10 A) and higher on-off current ratio (1.38×104) than its counter part single-channel nc-SiC TFT. Besides, the double-channel TFT possesses a field effect mobility of 1.13 cm2/Vs, which is also higher than that of 0.02 cm2/Vs for a poly-SiC TFT, and 1.05 cm2/Vs for a poly-Si TFT.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖表目錄 IX 第一章 導論 1 1-1 前言 1 1-2 奈米碳化矽(nanocrystal silicon carbide) 2 1-3 論文架構 4 第二章 理論基礎 5 2-1 薄膜電晶體基本結構 5 2-2 薄膜電晶體工作原理 5 2-2-1 汲極電流相對於汲極電壓的I-V曲線 5 2-2-2 汲極電流相對於閘極電壓的I-V曲線 7 2-3 薄膜電晶體電性參數 9 第三章 實驗與量測儀器和製程步驟 12 3-1 HWCVD特性 12 3-2 影響奈米碳化矽薄膜的參數 14 3-3 TFT相關製程技術 19 3-3-1 真空蒸著系統(Thermal Vacuum Evaporation System) 19 3-3-2 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 20 3-4 量測儀器 22 3-4-1 場放射型掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 22 3-4-2 原子力顯微鏡(Atomic Force Microscope, AFM) 22 3-4-3 膜厚量測儀(α-step) 23 3-4-4 X光繞射儀(X-ray Diffraction, XRD) 23 3-4-5 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR) 25 3-4-6 拉曼光譜儀(Raman) 25 3-5 製程步驟與成長參數 26 3-5-1 矽基板的預處理 26 3-5-2 使用濺鍍系統成長閘極絕緣層 27 3-5-3 使用HWCVD成長主動層 27 3-5-4 使用蒸著系統成長電極 28 第四章 結果與討論 29 4-1 奈米碳化矽薄膜分析 29 4-1-1 CH4對薄膜特性之影響 29 4-1-2 鎢絲溫度對薄膜特性之影響 32 4-1-3 基板偏壓對薄膜特性之影響 33 4-2 奈米碳化矽薄膜電晶體分析 35 4-2-1 Al2O3/HfO2/Al2O3 36 4-2-2 ID-VD特性曲線 36 4-2-3 ID-VG特性曲線 37 第五章 結論與展望 39 5-1 結論 39 5-2 展望 40 參考文獻 41

    [1]G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, M. Weidner, “SiC material properties,” International Journal of High Speed Electronics and Systems, vol. 15, No. 4, pp. 705-745, 2005.

    [2]M.B. Yu, Rusli, S.F. Yoon, Z.M. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui, “Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method,” Journal of Applied Physics, vol. 87, p. 8155, 2000.

    [3]C.E. Weitzel, J.W. Palmour, C.H. Carter Jr, K. Moore, K.K. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE transactions on electron devices, vol. 43, pp. 1732–1741, 1996.

    [4]B. García, M. Estrada, K. Albertin, M. Carreño, I. Pereyra, and L. Resendiz, “Amorphous and excimer laser annealed SiC films for TFT fabrication,” Solid-State Electronics, vol. 50, pp. 241-247, Feb 2006.

    [5]紀國鐘,鄭晃忠,“液晶顯示器技術手冊,”經濟部技術處發行,台灣電子材料與元件協會出版。

    [6]S. Wagner, H. Gleskova, I. Cheng, and M. Wu, “Silicon for thin-film transistors,” Thin Solid Films, vol. 430, pp. 15-19, Apr. 2003.

    [7]J. Park, S. Han, S. Park, M. Han, and M. Shin, “Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150°C,” Physica Scripta, vol. T126, pp. 85-88, 2006.

    [8]D.K. Dosev, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition”, in PhD thesis. Barcelona: Universitat Politècnica de Catalunya(UPC) Apr. 2003.

    [9] R.S. Kern and R.F. Davis, “Deposition and doping of silicon carbide by gas-source molecular beam epitaxy,” Applied Physics Letters, vol. 71, p. 1356, 1997.

    [10] C. Zetterling and I.O.E. Engineers, “Process technology for silicon carbide devices”, IET, 2002.

    [11]P.G. Neudeck, “SiC technology,” The VLSI handbook, CRC Press, Inc., 1998.

    [12]葉思武,“新陶瓷學,”復文出版社,1990。

    [13]王軍,“不同基板及基板表面處理對成長碳化矽奈米線之影響,”國立成功大學材料科學研究所碩士論文,2008。

    [14]A. Tabata and Y. Komura, “Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances,” Surface and Coatings Technology, vol. 201, pp. 8986-8990, Sep. 2007.

    [15]J. Puigdollers, C. Voz, A. Orpella, I. Martín, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, and R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299-302, pp. 400-404, Apr. 2002.

    [16]M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, and T. Ytterdal, “SPICE Models for Amorphous Silicon and Polysilicon Thin Film Transistors,” Journal of The Electrochemical Society, vol. 144, pp. 2833-2839, 1997.

    [17]J. Puigdollers, D. Dosev, A. Orpella, C. Voz, D. Peiro, J. Bertomeu, L.F. Marsal, J. Pallares, J. Andreu, and R. Alcubilla, “Microcrystalline silicon thin film transistors obtained by hot-wire CVD,” Materials Science and Engineering B, vol. 69-70, pp. 526-529, Jan. 2000.

    [18]S.M. Han, J.H. Park, H.S. Shin, Y.H. Choi, and M.K. Han, “High performance nanocrystalline-Si TFT fabricated at 150°C using ICP-CVD,” IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 117–120, 2005.

    [19]H. Wiesmann, A.K. Ghosh, T. McMahon, and M. Strongin, “a-Si:H produced by high-temperature thermal decomposition of silane,” Journal of Applied Physics, vol. 50, p. 3752, 1979.

    [20]A. Gallagher, “Some physics and chemistry of hot-wire deposition,” Thin Solid Films, vol. 395, pp. 25-28, Sep. 2001.

    [21]H.B. Palmer, J. Lahaye, and K.C. Hou, “Kinetics and mechanism of the thermal decomposition of methane in a flow system,” The Journal of Physical Chemistry, vol. 72, pp. 348-353, Jan. 1968.

    [22]A. Dasgupta, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, and M. Luysberg, “Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique,” Thin Solid Films, vol. 516, pp. 622-625, Jan. 2008.

    [23]Y. Komura, A. Tabata, T. Narita, A. Kondo, and T. Mizutani, “Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature,” Journal of Non-Crystalline Solids, vol. 352, pp. 1367-1370, Jun. 2006.

    [24]A. Tabata and M. Mori, “Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates,” Thin Solid Films, vol. 516, pp. 626-629, Jan. 2008.

    [25] J. Xu, J. Mei, Y. Rui, D. Chen, Z. Cen, W. Li, Z. Ma, L. Xu, X. Huang, and K. Chen, “UV and blue light emission from SiC nanoclusters in annealed amorphous SiC alloys,” Journal of Non-Crystalline Solids, vol. 352, pp. 1398-1401, Jun. 2006.

    [26]B.P. Swain, T. Gundu Rao, M. Roy, J. Gupta, and R. Dusane, “Effect of H2 dilution on Cat-CVD a-SiC:H films,” Thin Solid Films, vol. 501, pp. 173-176, Apr. 2006.

    [27]A. Tabata, M. Kuroda, M. Mori, T. Mizutani, and Y. Suzuoki, “Band gap control of hydrogenated amorphous silicon carbide films prepared by hot-wire chemical vapor deposition,” Journal of Non-Crystalline Solids, vol. 338-340, pp. 521-524, Jun. 2004.

    [28]Y. Komura, A. Tabata, T. Narita, and A. Kondo, “Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system,” Thin Solid Films, vol. 516, pp. 633-636, Jan. 2008.
    [29]M. Lee and S.F. Bent, “Temperature effects in the hot wire chemical vapor deposition of amorphous hydrogenated silicon carbon alloy,” Journal of Applied Physics, vol. 87, p. 4600, 2000.

    [30]D. Song, E. Cho, Y. Cho, G. Conibeer, Y. Huang, S. Huang, and M.A. Green, “Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix,” Thin Solid Films, vol. 516, pp. 3824-3830, Apr. 2008.

    [31]K.C. Kim, C.I. Park, J.I. Roh, K.S. Nahm, Y.B. Hahn, Y. Lee, and K.Y. Lim, “Mechanistic Study and Characterization of 3C-SiC(100) Grown on Si(100),” Journal of The Electrochemical Society, vol. 148, pp. C383-C389, May. 2001.

    [32]D. Franz, F. Grangeon, T. Delachaux, A.A. Howling, C. Hollenstein, and J. Karner, “Rapid deposition of hydrogenated microcrystalline silicon by a high current DC discharge,” Thin Solid Films, vol. 383, pp. 11-14, Feb. 2001.

    [33]H.R. Moutinho, C.-S. Jiang, J. Perkins, Y. Xu, B.P. Nelson, K.M. Jones, M.J. Romero, and M.M. Al-Jassim, “Effects of dilution ratio and seed layer on the crystallinity of microcrystalline silicon thin films deposited by hot-wire chemical vapor deposition,” Thin Solid Films, vol. 430, pp. 135-140, Apr. 2003.

    [34]Yong Sun and Tatsuro Miyasato, “Infrared Absorption Properties of Nanocrystalline Cubic SiC Films,” Japanese Journal of Applied Physics, vol. 37, pp. 5485-5489, 1998.

    [35]Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo, and T. Mizutani, “Film Properties of Nanocrystalline 3C–SiC Thin Films Deposited on Glass Substrates by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source,” Japanese Journal of Applied Physics, vol. 46, pp. 45-50, 2007.

    [36]M. Lattemann, E. Nold, S. Ulrich, H. Leiste, and H. Holleck, “Investigation and characterisation of silicon nitride and silicon carbide thin films,” Surface and Coatings Technology, vol. 174-175, pp. 365-369, Sep. 2003.

    [37]B.B. Wang, W.L. Wang, and K.J. Liao, “Theoretical analysis of ion bombardment roles in the bias-enhanced nucleation process of CVD diamond,” Diamond and Related Materials, vol. 10, pp. 1622-1626, Sep. 2001.

    [38]D.C. Gilmer, R. Hegde, R. Cotton, R. Garcia, V. Dhandapani, D. Triyoso, D. Roan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J.M. Grant, L. La, S. Samavedam, B. Taylor, H. Tseng, and P. Tobin, “Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3/HfO2 gate dielectrics,” Applied Physics Letters, vol. 81, p. 1288, 2002.

    [39]W.J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T.P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics,” IEEE Electron Device Letters, vol. 23, pp. 649-651, Nov. 2002.

    [40]S. Chang, Y. Song, S. Lee, S.Y. Lee, and B. Ju, “Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure,” Applied Physics Letters, vol. 92, p. 192104, 2008.

    [41]S. Choi, M. Cho, H. Hwang, and J. Woo Kim, “Improved metal–oxide–nitride–oxide–silicon-type flash device with high-k dielectrics for blocking layer,” Journal of Applied Physics, vol. 94, p. 5408, 2003.

    [42]C. Lin, C. Chang, Y. Lee, and Y. Yeh, “High drivability μc-Si TFT device with a compound channel layer structure,” Journal of Physics and Chemistry of Solids, vol. 69, pp. 645-647, Feb. 2008.

    [43]B. García, M. Estrada, K. Albertin, M. Carreño, I. Pereyra, and L. Resendiz, “Amorphous and excimer laser annealed SiC films for TFT fabrication,” Solid-State Electronics, vol. 50, pp. 241-247, Feb. 2006.

    無法下載圖示 校內:2015-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE