簡易檢索 / 詳目顯示

研究生: 劉韋廷
Liu, Wei-Ting
論文名稱: 瀝青混凝土添加焚化爐底碴與回收料之工程性質
Engineering Properties of Bituminous Mixtures Contained with Bottom Ash and Reclaimed Asphalt Pavement
指導教授: 陳建旭
Chen, Jian-shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 208
中文關鍵詞: 微觀結構瀝青混凝土回收料焚化爐底碴掃描式電子顯微鏡瀝青薄膜厚度
外文關鍵詞: Scanning Electron Microscope(SEM), Thickness of Asphalt film, Bottom Ash(BA), Micro-Structure, Recycled Asphalt Pavements(RAP)
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒料是瀝青混凝土的主要組成,由於天然粒料的匱乏,使用替代粒料是不可避免的趨勢,現今瀝青混凝土刨除料(Recycled Asphalt Pavements,RAP)和焚化爐底碴(Bottom Ash,BA)皆可作為替代粒料使用,因此本研究欲探討此兩種材料同時添加至瀝青混凝土之可行性。
    利用馬歇爾配合設計求得在20%RAP下添加不同含量之底碴(0%~30%)之最佳瀝青含量,接著在最佳瀝青含量下比較不同含量RAP與底碴對工程性質的影響,最後利用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析純天然粒料、RAP與底碴之粒料包裹瀝青前後在微觀結構上之差異,最後觀察分析底碴含量上升時瀝青薄膜厚度的變化,並且與理論公式進行比較。
    工程性質的結果顯示,RAP含量越高表示老化瀝青含量越多,因此瀝青混合料的整體勁度上升,可以彌補底碴材料本身結構較弱的部份;使用40%RAP%與30%底碴的瀝青混凝土仍然擁有良好的工程性質。微觀結構部分,三種粒料的表面結構組成有所差異,因此粒料受到瀝青包裹後呈現的形態也不盡相同,由於天然粒料與RAP的粒料微觀結構較為相似,經由瀝青包裹後無法清楚的分辨此兩種粒料,此外,觀察純RAP製成的瀝青混凝土可發現黑石頭現象。瀝青薄膜厚度的數值會受到粒徑尺寸的界定以及放大倍率的不同導致差異很大,由於瀝青混凝土變異性很大,因此瀝青薄膜厚度無法均勻地在試體中觀測而得,本研究驗證在放大倍率10000倍下,瀝青膠漿內的薄膜厚度與理論計算結果接近。

    Aggregate is the major ingredient in asphalt concrete. Because of the lack of nature resources, using secondary aggregate to replace nature aggregate is an inevitable trade.Both of Recycled Asphalt Pavements and Bottom Ash can be used in asphalt concrete, so this research is going to evaluate the feasibility of the engineering properties of bituminous mixtures contained with bottom ash and reclaimed asphalt pavement.

    This research can be divided into three parts. In the first part, I will try to find out what the optimum asphalt content is in specific condition which is based on 20% RAP with 0% to 30% BA by using Marshall Mix design. The second part focuses on how the engineering properties of bituminous mixtures will be influenced by different percentages of RAP and BA. In the last part, I’ll use Scanning Electron Microscope to observe the micro-structure of nature aggregate, RAP, and BA which are all coated with asphalt. In addition, I will also analyze how the asphalt film will be changed when BA content increases, and compare the result with the theoretical formula.

    From the research, it shows that the increase of RAP percentage will cause higher stiffness of asphalt concrete mix which can also make up for the weakness of BA aggregate structure. This research gets a good engeering property with 40% RAP and 30% BA. According to the micro-structure analysis, differences can be easily found between BA and RAP, while it’s hard to distinguish RAP from the natural aggregates, especially when they are coated with asphalt, it becomes much more difficult. Besides, black rock are found in asphalt concrete mix with 100% RAP, it means the adhesion between asphalt and aggregate isn’t quiet good.The thickness of asphalt film will be affected by not only the size of aggregate but also the magnification. However, the average thickness of asphalt film can’t be observed in the asphalt concrete because of its high variablilty. The silimar result with theoretical formula can be obtained in 10000 magnification.

    目錄 摘要 I 表目錄 XII 圖目錄 XV 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-4 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 焚化爐底碴及基本特性 2-1 2.1.1 焚化爐系統與底碴來源 2-1 2.1.2 底碴前處理技術 2-3 2.1.3 焚化爐底碴的基本性質 2-5 2.1.4 國外焚化爐底碴使用情形 2-7 2.1.5 國內焚化爐底碴使用的情形 2-14 2.2瀝青混凝土回收料 (Reclaimed Asphalt Pavement,RAP) 2-16 2.2.1瀝青混凝土回收料添加比例 2-17 2.2.2 回收料的黏結料性質 2-18 2.2.3 回收料的粒料性質 2-19 2.2.4 黑石頭行為 2-20 2.2.5熱拌再生瀝青混凝土與傳統瀝青混凝土 2-21 2.2.6 再生瀝青混凝土配合設計 2-22 2.2.7 再生瀝青混凝土拌合過程 2-23 第三章 研究計畫 3-1 3.1 試驗架構與流程 3-1 3.2 試驗材料與規範 3-4 3.3 瀝青物性試驗 3-5 3.3.1 針入度試驗 3-5 3.3.2 黏滯度試驗 3-6 3.3.3 比重試驗 3-6 3.4 粒料基本物性試驗 3-6 3.4.1 篩分析試驗 3-6 3.4.2 比重及吸水率試驗 3-6 3.4.3 洛杉磯磨損試驗 3-7 3.4.4 健性試驗 3-7 3.4.5 浸水回脹試驗 3-7 3.5 粒料化性試驗 3-10 3.5.1 X光繞射分析(XRD) 3-10 3.5.2能量散射光譜儀(EDS) 3-11 3.6 回收瀝青萃取試驗 3-12 3.7 瀝青配合設計—馬歇爾法 3-13 3.8 再生瀝青混凝土添加焚化爐底碴之基本力學性質試驗 3-14 3.8.1 穩定值、流度值試驗 3-15 3.8.2 回彈模數試驗 3-15 3.8.3 間接張力試驗 3-17 3.8.4 浸水剝脫試驗 3-19 3.8.5 車轍輪跡試驗 3-20 3.9 平均瀝青薄膜厚度 3-23 3.10 掃瞄式電子顯微鏡(Scanning Electron Microscope) 3-25 3.10.1 儀器介紹 3-25 3.10.2 二次電子影像(Secondary Electron Image,SEI)與背向散射電子成像(Backscattered Electron Image,BEI) 3-26 3.10.3 鍍金機之工作原理 3-27 3.10.4 SEM樣本之製作準備 3-28 3.10.5 Image J 科學影像處理軟體 3-29 3.11 符號說明 3-36 第四章 試驗結果分析與討論 4-1 4.1 材料基本物性試驗 4-1 4.1.1 瀝青黏結料基本特性 4-1 4.1.2 粒料基本特性 4-2 4.1.3瀝青混凝土回收料 4-6 4.1.4 粒料化性試驗 4-8 4.2 再生瀝青配合設計 4-12 4.2.1 黏結料瀝青含量與黏滯度 4-13 4.2.2 粒料級配 4-13 4.2.3 再生配合設計瀝青含量 4-15 4.2.4 再生配合設計瀝青等級 4-16 4.2.5 馬歇爾配合設計結果 4-17 4.2.6 瀝青薄膜厚度 4-30 4.2.7 最佳瀝青含量之比較 4-31 4.3 工程性質 4-34 4.3.1 馬歇爾穩定值 4-34 4.3.2 馬歇爾流度值 4-43 4.3.3 間接張力值 4-46 4.3.4 浸水殘餘強度試驗 (TSR) 4-54 4.3.5 回彈模數 (MR值) 4-62 4.3.6 車轍輪跡試驗 4-68 4.4 微觀結構 4-74 4.4.1 掃描式電子顯微鏡(SEM) 4-74 4.4.2.粒料表面結構 4-75 4.4.3 瀝青包裹粒料之微觀表面 4-81 4.4.4 瀝青包裹粒料之BEI成像 4-86 4.4.5 黑石頭現象 4-90 4.4.6 利用影像線段色差處理分析瀝青薄膜厚度 4-92 4.4.6 利用區塊色差之影像分析薄膜厚度 4-98 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-1 附錄 附-1

    林晉哲 (2004). 「添加不同再生料含量對瀝青混凝土之影響」,國立成功大學土木工程研究所碩士論文,台南。
    侯清元 (2007) 評估熟化對焚化爐底碴做為瀝青混凝土添加料之影響,國立成功大學土木工程研究所碩士論文,台南。
    簡志聰 (2008)分析焚化爐底碴添加回收料之瀝青混凝土工程性質,國立成功大學土木工程研究所碩士論文,台南。
    中華鋪面工程學會 (2004a) 「近代新瀝青混凝土路面材料及產製鋪設技術」,桃園。
    中華民國行政院環境保護署 (2008),http://www.epa.gov.tw/main/index.asp,2008年9月14日瀏覽。
    中華民國行政院環境保護署(2007). 「一般廢棄物-垃圾焚化廠焚化底碴再利用管理方式」,2008年9月14日瀏覽。
    朱柏彥 (2008) 二次粒料應用於熱拌瀝青混凝土之評估,國立成功大學土木工程研究所博士論文,台南。

    張蕙蘭 (2003). 「國外焚化底碴再利用介紹」,http://portal.nccp.org.tw/monthlymgz/ens/ens12/doc/5-2.pdf,工業技術研究院環境與衛生發展中心,2008年10月1日瀏覽。
    蔡攀鰲 (1984) 瀝青混凝土,三民書局,台北。
    蔡攀鰲 (2000). 公路工程學,國立成功大學土木系,台南。
    蔡攀鰲 (2002). 「再生瀝青混凝土拌合廠審查認可基準」,再生瀝青混凝土實務講習,中華鋪面工程學會,台南,第1-19頁。
    蔡攀鰲 (2004).「再生瀝青混凝土」,近代新瀝青混凝土路面材料及產製鋪設技術,中華鋪面工程學會,第107-127頁。
    吳仁浩 (2006) 分析垃圾焚化爐底碴應用於瀝青混凝土之可行性,國立成功大學土木工程研究所碩士論文,台南。
    科學影像處理軟體Image j 網站(2008),http://rsb.info.nih.gov/ij/index.html,2009年4月6日瀏覽。

    Bagampadde, U., AI-Abdul Wahhab, H. I., and Aiban, S. A. (1999). “Optimization of Steel Slag Aggregate for Bituminous Mixes in Saudi Arabia,” Journal of Materials in Civil Engineering, Vol.11, n 1, pp.30-35.
    Chen, J. S., Chu P. Y., Chang, J. E., Lu, H. C., Wu, Z. H., and Lin, K. Y., (2008). “Engineering and Environmental Characterization of Municipal Solid Waste Bottom Ash as an Aggregate Substitute Utilized for Asphalt Concrete,” Journal of Materials in Civil Engineering, Vol.20, pp.432-439.
    Elseifi, M.A., Al-Qadi, I.L., Yang, S.H., and Carpenter, S. (2008), “Validity of Asphalt Binder Film Thicken Concept in Hot-Mix Asphalt,” 87th Transportation Research Board Annual Meeting, Washington, D.C. (CD-ROM).

    Forteza, R., Far, M., Seguı, and C., Cerda, V., (2004). “Characterization of Bottom Ash in Municipal Solid Waste Incinerators for Its Use in Road Base,” Waste Management, Vol.24, pp.899-909.

    Gardiner, M.S. and Wagner, C., (1999). “Use of Reclaimed Asphalt Pavement in Superpave Hot-Mix Asphalt Application,” Transportation Research Record 1681, pp.1~9.

    Garrick N.W. and Chan K.L. (1993). “Evaluation of Domestic Incinerator Ash for Use as Aggregate in Asphalt Concrete” Transport Research Record (TRR) 1418, pp. 30-34.

    Hadipour, K., and Anderson, K. O., (1998). “An Evaluation of Permanent Deformation and Low Temperature Characteristics of Some Recycled Asphalt Concrete Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol.57, pp.615-645.

    Hassan, H. F., (2005). “Recycling of Municipal Solid Waste Incinerator Ash in Hot-Mix Asphalt Concrete,” Construction and Building Materials, Vol.19, pp.91-98.

    Hossam F. H., Salim AI-Oraimi, and Ramzi T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp.416-422.

    Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B.K., (2005). “Laboratory Investigation of Mixing HMA with RAP,” Transportation Research Board 83rd Annual Meeting, Washington, D. C. (on CD-ROM).

    Huang, C. M., Chiu, C.T., Li, K. C., and Yang, W. F., (2006). ”Physical and Environmental Properties of Asphalt Mixtures Containing Incinerator Bottom Ash,” Journal of Hazardous Materials, B137, pp.1742-1749.

    Karlsson, R. and Isacsson, U., (2006). “Material-Related Aspects of Asphalt Recycling—State-of-the-Art,” Journal of Materials in Civil Engineering, Vol.18, pp.81-92.

    Kose, S., Guler, M., Bahia, H.U., and Masad, E., (2000). “Distribution of Strains within Asphalt Binders in HMA Using Imaging and Finite Element Techniques,” Transportation Research Record, No. 1728, Washington, D.C., pp.21-27.

    Li, X., Marasteanu, M.O., Williams, R.C., and Clyne, T.R. (2008) “Effect of RAP (Proportion and Type) and Binder Grade on the Properties of Asphalt Mixtures,” 87th Annual Meeting of the Transportation Research Board, CD-ROM, pp.1-16.

    Ohio Department of Transportation,(2002)”Supplemental Specification 874 Ultrathin Bonded Asphalt Concrete,” Ohio.

    Shah, A., McDaniel, R.S., Huber, G.A., Gallivan, V.L. (2007) “Investigation of Properties of Plant-Produced Reclaimed Asphalt Pavement Mixtures,” Transportation Research Record:Journal of Transportation Research Board, NO. 1998, pp.103-111.

    National Cooperative Highway Research Program(NCHRP), (2001). “Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Guidelines,” Research Results Digest – Number 253.
    Soenen, H., Visscher, J. D., Tanghe, T., Vanelstraete, A., and Redelius, P. (2006). “Selection of Binder Performance Indicators for Asphalt Rutting Based on Triaxial and Wheel Tracking Tests,” Journal of Association of Asphalt Paving Technologists, Vol.75, pp.165-202.

    Soleymani, H.R., Anderson, M., McDaniel, R. and Abdelrahman, M., (2000). “Investigation of The Black Rock Issue for Recycled Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol. 69, pp.366~390.

    Sondag, M. S., Chadbourn, B. A. and Drescher, A., (2002). Investigation of Recycled Asphalt Pavement (RAP) Mixtures Final Report, Minnesota Department of Transportation, Virginia

    下載圖示 校內:2012-07-07公開
    校外:2012-07-07公開
    QR CODE