| 研究生: |
方政幃 Fang, Jheng-Wei |
|---|---|
| 論文名稱: |
鐵酸鉍薄膜的電場切換導電態之研究 Study on electric-switching of conduction states in BiFeO3 film |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鐵酸鉍 、導電 |
| 外文關鍵詞: | BiFeO3, conduction |
| 相關次數: | 點閱:60 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,以壓電力顯微鏡(Piezoelectric Force Microscopy,PFM)與導電式原子力顯微鏡(conductive-Atomic Force Microscopy,c-AFM)探討磊晶鐵酸鉍(BiFeO3,BFO)薄膜的導電態切換特性與特殊向心狀鐵電域壁的導電特性。利用施加不同時間與強度的外加電場,調控薄膜與探針之間的載子濃度分布,以PFM和c-AFM同時觀察到了壓電訊號屏蔽與導電性增強現象,並由電流電壓曲線擬合發現Pt/BiFeO3/SrRuO3結構的傳導機制在低電場時為蕭特基發射,高電場狀態時則為福勒-諾德漢穿隧效應所主導。施加的外場吸引氧空缺累積於薄膜表面降低局部位障成為高導電狀態。
凝態物理中域壁作為拓樸缺陷,在近來的研究中受到很大的重視,尤其多鐵性材料的域壁有低維度電子傳輸及磁電耦合特性,擁有發展新式電子裝置的潛力。透過單點脈衝電壓的施加,可在鐵酸壁薄膜中形成向心狀電域結構,結構內部域壁相對於電域中心皆為高導電狀態。能夠由多次的脈衝電壓操控電域與域壁形貌,進而改變局部的導電狀態。
In this study, I present the conduction switching and central-type-domain conductivity in epitaxial BiFeO3 (100) films by the piezoresponse force microscopy (PFM) and conductive-atomic force microscopy (c-AFM). The local carrier density of the BFO film can be controlled by electric field with different time and magnitude through applying voltage pulses from the tip. The phenomenon of conductivity enhancement can be observed directly on the c-AFM image and also revealed in the PFM image by the shielding of piezoresponse signal. From the current-voltage curve fitting, the transmission mechanism in the domain of Pt/BiFeO3/SrRuO3 structure was confirmed as Schottky emission and Fowler-Nordheim tunneling under low and high bias voltages, respectively. The applied field attracted the oxygen vacancies which were accumulated at the film surface and reduced the barrier for electron transport.
Domain walls (DWs), as the topological defects in condense materials, had attracted a lot of interests recently. In multiferroics, DW is potential for application in novel functional electronic devices, given their low-dimensional confinement for electron transport as well as the particular magneto-electric coupling behaviors. Through applying pulse voltage through tip, we can create the central-type-domain. The domain walls have high conductivity in central-type-domain structure. We can control the domain wall by applied pulse voltage, and change the local conduction state.
[1] Gene H. Haertling, J. Am. Ceram. Soc. 82, 4 797–818 (1999).
[2] W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 17 (2006).
[3] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, Nature Materials 5, 825-829 (2006).
[4] R. Ramesh and Nicola A. Spaldin, Nature Materials 6, 21-29 (2007).
[5] T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, and M. Barry, A. Doran, K. Lee, M. P. Cruz and R. Ramesh, App. Phys. Lett. 90, 123104 (2007).
[6] Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, Arantxa Fraile-Rodríguez, Andreas Scholl, Shan X. Wang and R. Ramesh, Nature Materials 7, 478-482 (2008).
[7] J. Rodríguez Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, Appl. Phys. Lett. 83, 4595 (2003).
[8] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein & R. Ramesh, Nature Materials 8, 229 - 234 (2009).
[9] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, Adv. Mater., 21, 2632–2663 (2009).
[10] Sheng T. Hsu and Tingkai Li, J. Appl. Phys. 101, 024517 (2007).
[11] J. C. Bruyere and B. K. Chakraverty, Appl. Phys. Lett. 16, 40 (1970).
[12] René Meyer, Rainer Waser, J. Appl. Phys. 100, 051611 (2006).
[13] Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
[14] H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C. Dowden,R. F. DePaula, S. R. Foltyn, and Q. X. Jia, Appl. Phys. Lett. 91, 072911 (2007).
[15] Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).
[16] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein & R. Ramesh, Nature Materials 8, 229 - 234 (2009).
[17] S. Farokhipoor and B. Noheda, Conduction through 71o domain walls in BiFeO3 thin films, arXiv:1104.3267v1 [cond-mat.mtrl-sci] (2011).
[18] J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010).
[19] C.-H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L.W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh, Nature Materials 8, 485 - 493 (2009).
[20] Can Wang, Kui-juan Jin, Zhong-tang Xu, Le Wang, Chen Ge, Hui-bin Lu, Hai-zhong Guo, Meng He, and Guo-zhen Yang, Appl. Phys. Lett. 98, 192901 (2011).
[21] S.M. Sze. ,”Physics of Semiconductor Devices”, John Wiley & Sons Inc (1982).
[22] 劉恩科, 朱秉升, 羅晉升, 嚴考豐 ”半導體物理學”新文京開發出版股份有限公司 (2006).
[23] A. Rose, Phys. Rev. 97, 1538 (1955).
[24] Jerzy Mycielski, Phys. Rev. 123, 99–103 (1961).
[25] W. G. Cady, “Piezoelectricity”, McGraw-Hill, New York (1946) .
[26] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
[27] 吳朗,"電子陶瓷-壓電",全欣資訊圖書股份有限公司(1994).
[28] Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
[29] A. F. Devonshire, Advances in Physics, 3, 10, 85-130 (1954).
[30] 鍾維烈,"鐵電體物理學",科學出版社,(2002).
[31] 柯政宏, 成功大學,碩士論文, "鐵酸鉍(111)磊晶薄膜鐵電電域之動態鬆弛" (2009).
[32] C. A. Randall, D. J. Barber and R. W. Whatmore, Journal of Materials Science Volume 22, Number 3, 925-931 (1987).
[33] M. Abplanalp, L.M. Eng and P. Günter, Appl. Phys. A,66, 231 (1998).
[34] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction, 2 nd. Ed.”, Prentice Hall, New Jersey (2001).
[35] P. Papon, J. Leblond, P.H.E. Meijer, Springer-Verlag Berlin Heidelberg, French (2006).
[36] 陳力俊,"材料電子顯微鏡學",行政院國家科學委員會精密儀器發展中心(2003).
[37] Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH, (1996).
[38] Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, (1999).
[39] R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, J. Appl. Phys., 74, 12 (1993).
[40] M. Alexe and A. Gruverman, “Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach”, Springer, (2004).
[41] S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008).