| 研究生: |
楊承勳 Yang, Cheng-Hsun |
|---|---|
| 論文名稱: |
單壁奈米碳管薄膜光感測器之製備與特性分析 Fabrication and Characteristic Evaluation of Single-Wall Carbon Nanotube Thin-Film Photosensor |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 奈米碳管 、酒精催化化學氣相沉積 、摻雜 、光感測器 |
| 外文關鍵詞: | carbon nanotubes, ACCVD, doping, photosensor |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管自1991年被發現以來,因其獨特的結構、機械性質以及電性…等,持續不斷的有相關研究投入,而利用其半導體特性以製作各種感測器元件方面,也一直有相關成果被發表,但多數均針對單根碳管的特性做探討,對於實際量產或批量製造,仍需要更了解其巨觀性質。
本研究利用酒精催化化學氣相沈積(Alcohol Catalytic Chemical Vapor Deposition , ACCVD)成長單壁奈米碳管薄膜,且一併探討製程中通入氨氣對碳管的摻雜效果。接著以積體電路相容製程製作光感測器元件,並針對不同光源下元件之電流-電壓特性做一系列之分析。
實驗結果顯示,氨氣處理並無法對奈米碳管進行有效摻雜,且會影響其品質。所製備之單壁奈米碳管薄膜光感測器,於大氣環境下,全波段的光源照射後確有3.3倍之電流增益,且隨光源強度增加,暗電流及光電流輸出穩定,但因氣體吸附效應所致,光電流增益並未達到一個數量級以上。尺寸效應方面,相同線寬情況下加大電極間距以增加受光面積,其所增加的光電流相較元件所增加的電阻仍太小。
綜合以上,若元件改以大線寬、短電極間距之設計,並阻絕氣體吸付效應的影響,應可有效提昇元件性能。
Carbon nanotubes(CNTs) was first found in 1991 and was massively studied since then due to its unique structure, mechanical and electronic properties. Because of the mention above, seminconducting CNTs have been employed to fabricate different kinds of functional sensor devices, but most researches are focusing on individual CNT, there are still many more macroscopic properties need to be verified for batch fabrication or commercial production.
In this research, Alcohol Catalytic Chemical Vapor Deposition(ACCVD) was applied to synthesis single wall carbon nanotubes(SWCNTs) thin-film, and the doping effects of additional purged NH3 will also be discussed. Furthermore, the I-V characteristics of photosensor fabricated by the IC compatible process will also be evaluated under different of light sources.
According to the results, the NH3 treatment process can not effectively dope into CNTs and will lose its quality. Under certain atmosphere, the SWCNTs thin-film photosensor were illuminated by a broadband light source and has a 3.3 times photocurrent gain which increase with higher light intensity. The measured darkcurrent and the photocurrent are stable with time passes, but the photocurrent gain is less than one order because of the probable gas absorbing effect. In the result of size effect, even with the same channel width, extended the gap distance between electrodes to larger the area which been illuminated, we found that the increased photocurrent can not contend with the raised resistance, and the total photocurrent gain was more unapparent than the one with small gap distance between electrodes.
Finally, we suggest that to reduce the gap distance between electrodes, extend the channel width and avoid the probable gas asorption may encourage the performance of the photosensor devices.
[1] C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright and C. Hierold. “Fabrication of single-walled carbon-nanotube-based pressure sensors,” Nano Lett., 6 P. 233~7(2006)
[2] T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik and L. Lin. “An electrothermal carbon nanotube gas sensor,” Nano Lett., 7 3686~90(2007)
[3] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga and W. I. Milne. “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Nanotechnology, 13, P.1~4 (2007)
[4] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob and Y. Hanein. “Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays,” Nanotechnolog, 18, P.35201 (2007)
[5] B. Pradhan, K. Setyowati, H. Liu, D. H. Waldeck and J. Chen. “Carbon nanotube polymer nanocomposite infrared sensor,” Nano Lett., 8 , P.1142~1146.(2008)
[6] H. W. Kroto,J. R. Heath, S. C. O'Brien. “C60: Buckminister-fullerene,” Nature, 318, P.162~163.(1985)
[7] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, et al. “Solid C60: a new form of carbon,” Nature, 347, P.354~358(1985)
[8] S. Iijima. “Helical microtubules of graphitic carbon,” Nature, 354, P.56–589.(1991)
[9] S. Iijima, T. Ichihashi. “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, P603~605(1993)
[10] D. S. Bethun, C. H. Kiang, M. S. Vries, ea al. “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer wall,” Nature, 363, P.605~607(1993)
[11] N. Hamada, Sl. Sawada, and A. Oshiyama. “New one–dimensional conductors: graphitic microtubes,” Phys.Rev.Lett., 68, P.1579~1581(1992)
[12] J. W. Mintmire, B. I. Dunlap, and C. T. White. “Are fullerene tubules metallic,” Phys. Rev. Lett., 68 P.631~634(1992)
[13] L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, andD. G. Pettifor. “Stability of carbon nanotubes:How small can they be?” Phys. Rev. Lett. 85, P.3249~3252(1992)
[14] M. S. Dresselhaus, G. Dresselhaus, R. Saito. “Physics of carbon nanotubes,” Carbon, 33, P.883~891(1995)
[15] S. Iijima. “Helical microtubules of graphitic carbon,” Nature, 354, P.56~589(1991)
[16] H. Jaeger, T. Behrsing. “Dual nature of vapour-grown carbon fibres,” Composite Sci Tech., 51, P.231(1994)
[17] M. Jose-Yacaman, M. Miki-yoshida, L. Rendon. “Catalytic growth of carbon microtubules with fullerene structure,” Appl Phys Lett., 62, 2029(1993)
[18] H. Jaeger, T. Behrsing, “Dual nature of vapour-grown carbon fibres,” Composite Sci Tech., 51, P.231(1994)
[19] M. Jose-Yacaman, H. Terrones, L. Rendon. “Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles,” Carbon, 33, P.669(1995)
[20] N. M. Rodriguez, M. S. Kim, R.T. K. Baker. “ Carbon nanofibers. A unique catalyst support medium ,” J. Phys. Chem., 98, P.13108(1994)
[21] 朱宏偉,慈立傑,梁吉等. “新型碳材料,” 15, P.48(2000)
[22] H. M. Cheng, F. Li, G. Su. “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl Phys Lett., 72, P.3282(1998)
[23] T. W. Ebbesen, and P. M. Ajayan. “Large-scale synthesis of carbon nanotubes,” Nature ,358 , P.220~222(1992)
[24] S. Iijima, T. Ichihashi. “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, P.603~605(1992)
[25] Y. Saito, M. Okuda, M. Tomita and T. Havashi. "Extrusion of. single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source," Chem. Phys.Lett., 419, P.236(1995)
[26] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scuseria,D Tomnek, J. E. Fischeo,and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, 273 , P.483~487(1996)
[27] M. Tanemaru, K. Iwata, K. Takahashi, et al. “Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters,” J. Appl Phys., 90, P.1529~1533(2001)
[28] C. J Lee, S. C. Lyu, Y. R. Cho, et al. “Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition,” Chem. Phys. Lett., 341, P.245~249(2001)
[29] S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui ,and A. Burger. “Growth oriention of carbon nanotubes by thermal chemical vapor deposition,” Journal of Crystal Growth, 234 P.584~588(2002)
[30] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen. “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Thin Solid Films, 390 , P.130~133(2002)
[31] Y. C. Choi, Y. M. Shin, Y. H. Lee,and B. S. Lee. “Controlling the diameter,growth rate,and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition,” Appl Phys Lett , 76 , P.2367~2369(2000)
[32] Takuji Komukai, Katsunori Aoki, Hiroshi Furuta, Mamoru Furuta, Kenliro Oura, Takashi Hirao. “Density control of carbon nanotubes through the thickness of Fe/ Al multilayer catalyst,” Jpn. J. Appl Phys., 45, P. 6043~6045(2006)
[33] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J.Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne. “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., 90, P.5308(2001)
[34] S. Honda, Y. G. Baek, K.-Y. Lee, T. Ikuno, T. Kuzuoka, J. T. Ryu, S.Ohkura, M. Katayama, K. Aoki, T. Hirao and K. Oura, “Synthesis of randomly oriented carbon nanotubes on SiO2 substrates by thermal chemical vapor deposition toward field electron emitters ,” Thin Solid Films , 464~465 , P.290(2004)
[35] T. Ikuno, S. Honda, H. Furuta, K. Aoki, T. Hirao, K. Oura and M. Katayama, “Correlation between field electron emission and structural properties in randomly and vertically oriented carbon nanotube films,” Jpn. J. Appl. Phys. ,44 , P.1655(2005)
[36] O. Smiljanic, T. Dellero, A. Serventi, G. Lebrun, B. L. Stansfield, J. P. Dodelet, M. Trudeau and S. Désilets. “Growth of carbon nanotubes on Ohmically heated carbon paper,” Chem. Phys. Lett.,342, P.503~509(2001)
[37] Y. H. Wang, J. Lin, C. H. A. Huan and G. S. Chen. “Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett.,79 P.680(2001)
[38] Shigeo Maruyama, Ryosuke Kojima, Yuhei Miyauchi, Shohei Chiashi, Masamichi Kohno. “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, 360, P.229–234(2002)
[39] Yoichi Murakami, Yuhei Miyauchi, Shohei Chiashi, Shigeo Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates,” Chemical Physics Letters, 377, P.49~54(2003)
[40] Yoichi Murakami, Yuhei Miyauchi, Shohei Chiashi, Shigeo Maruyama. “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol,” Chemical Physics Letters, 374, P.53~58(2003)
[41] Yoichi Murakami , Shohei Chiashi , Yuhei Miyauchi , Minghui Hu ,Masaru Ogura , Tatsuya Okubo, Shigeo Maruyama. “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, 385, P.298~303(2004)
[42] Hideki Sato, Koichi Hata, and Ken Hiasa. “Low temperature growth of carbon nanotubes by alcohol catalyticchemical vapor deposition for field emitter applications, ” J. Vac. Sci. Technol., 25, P.579(2007)
[43] Tzong-Ming Wu ,Yen-Wen Lin. “Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties,” Polymer, 47, P.3576~3582(2006)
[44] S. M. Sze. “Semiconductor Device Physics and Technology,” P.278(1985)
[45] Dieter K. Schroder, “Semiconductor material and device characterization,” A Wiley-Interscience Publication, Chap.3(1998)
[46] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, “Current Transport in Metal-Semiconductor-Metal (MSM) structures,” Vol. 14, P.1209 (1971)
[47] A. Fujiwara, Y. Mastuoka, H. Suematsu, N. Ogawa, et al. "Photoconductivity in semiconducting single-walled carbon nanotubes," J. Appl. Phys. Lett, 40, P.1229~1231(2001)
[48] M. Freitag, Y. Martin et al. "Photoconductivity of Single Carbon Nanotubes," Nano Lett., 3, No.8, P.1067~1071(2003)
[49] I. A. Levitskya, W. B. Euler. "Photoconductivity of single-wall carbon nanotubes under continuous-wavenear-infrared illumination," Appl. Phys. Lett., 83, No.9(2003)
[50] A. Fujiwara, Y. Mastuoka, et al."Photoconductivity of single-wall carbon nanotube films," Carbon, 42, P.919~922(2004)
[51] S. X. Lu, B. Panchapakesan. "Photoconductivity in single wall carbon nanotube sheets," Nanotechnology, 17, P.1843~1850(2006)
[52] C. M. Lin, W. L. Fang. "Batch-fabricated flexible carbon nanotubes’ photosensor array," Nanotechnology, 20, P.465502(2009)
[53] A. Jorio, A. G. Souza Gilho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, et al. “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes,” Physical Review B, 65, P.155412(2002)
[54] Rober J. Chen, Nathan R. Fraklin, Jing Kong, Jien Cao, et al. “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett, 79, P.2258(2001)