簡易檢索 / 詳目顯示

研究生: 呂冠宏
Lu, Guan-Hong
論文名稱: 以氧電漿處理改善氧化銦鎵鋅薄膜電晶體之源極接面缺陷及其電性之研究
Improving Source Defect and Electronic Properties of InGaZnO Thin-Film Transistors Using O2 Plasma Treatment
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 氧化銦鎵鋅薄膜電晶體氧電漿處理
外文關鍵詞: IGZO, interface defect, O2 plasma treatment
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討源極與氧化銦鎵鋅通道層之表面態位密度於氧化銦鎵鋅薄膜電晶體特性之影響,並提出使用氧電漿處理改善源極與氧化銦鎵鋅通道層缺陷的方法。習知改善表面缺陷的各項製程中,尤以高溫退火最為廣泛使用,但缺點為較高溫的製程並不適用於可撓式基板,且其全面性的熱處理及較高的thermal-budget 皆可能使得元件特性劣化。
    使用氧電漿製程處理氧化銦鎵鋅薄膜電晶體之源極接面,以改善此接面之表面態位密度,實驗結果發現,於氧電漿處理時間及製程功率分別為30秒與100 W,可得最佳的元件特性,其關閉電流與次臨界擺幅分別改善至4.13×10-5 A與0.119 V/dec。
    本論文成功於室溫環境下,利用氧電漿處理製程提升氧化銦鎵鋅薄膜電晶體之特性,於關閉電流、次臨限擺幅與電流開關比皆有明顯改善。此氧電漿處理製程,具有簡單、大面積、快速及低溫製程之優點,除可應用於玻璃基板及軟性基板上,亦可使用於大尺寸之面板,於未來顯示技術(AMLCD或AMOLED)與軟性電子產品的應用深具研究與發展潛力。

    The effect of O2 plasma treatment on amorphous indium gallium zinc oxide (-IGZO) thin films was investigated. The turn off leakage current (6.1×10-12 A) of the -IGZO thin films dramatically decreased upon their exposure to the O2 plasma compared to that (2.39×10-11 A) of the as-deposited thin film. We attempted to reduce the source and channel interface defect by using the O2 plasma treatment. Those interface defects provide the leakage path, so the fewer surface defects can be expected to effectively reduce the leakage current. Without the treatment, the -IGZO thin film transistors (TFTs) with W/L=500 μm /50 μm exhibited a saturation mobility(μsat) of 2.81 cm2V-1 s-1, subthreshold gate swing (SS) of 0.148 V/ decade, turn off current (Ioff) of 2.39×10-11 A, and Ion/off ratio of 2.6×106. The device performance of the -IGZO TFTs was significantly improved by the O2 plasma treatment. As a result, an excellent SS value of 0.119 V/decade and lower turn off current of 6.1×10-12 A, as well as a high Ion/Ioff of 6.77×106, were achieved for the treated -IGZO TFTs.

    第一章 緒論 1 1-1 TFT-LCD顯示器介紹 1 1-2 薄膜電晶體通道層材料 4 1-3透明氧化物半導體特性 6 1-4 高介電係數材料技術與選擇 11 1-5 研究動機 14 第二章 理論基礎 16 2-1 等效氧化層厚度及介電常數之計算 16 2-2 薄膜電晶體結構 19 2-3 薄膜電晶體操作原理 20 2-4 薄膜電晶體基本參數 23 第三章 實驗儀器設備介紹 27 3-1 製程設備介紹 27 3-1-1 電漿增強型化學氣相沉積機 27 3-1-2 射頻磁控濺鍍機 28 3-1-3 電子束蒸鍍機 31 3-2 材料分析儀器 32 3-2-1 掃描式電子顯微鏡 32 3-2-2 X光繞射儀(X-ray diffractometer, XRD) 33 3-2-3 X光光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 35 3-3 元件電性量測使用儀器 37 第四章 實驗流程 39 4-1氧化銦鎵鋅薄膜電晶體製備 40 4-1-1 標準RCA清潔法(RCA clean) 40 4-1-2 氧化銦鎵鋅薄膜電晶體電漿處理 42 第五章 元件特性分析 50 5-1 介電層氧化矽鉿(HfSiO)薄膜材料特性 50 5-1-1 XRD薄膜分析 50 5-1-2 XPS薄膜分析 51 5-2 n+-Si/HfSiO/Ti 電容特性 52 5-2-1 電容-電壓曲線(C-V Curve) 52 5-2-2 漏電分析(J-V Curve) 54 5-3 主動層氧化銦鎵鋅(InGaZnO)薄膜材料特性 55 5-3-1 XRD薄膜分析 55 5-4應用氧電漿處理製程於氧化銦鎵鋅薄膜電晶體之電性量測與分析 56 5-4-1 Condition A 源極應用氧電漿處理製程之IGZO TFTs IDS-VDS特性曲線 56 5-5-2 Condition A 源極應用氧電漿處理製程之IGZO TFTs IDS-VGS特性曲線 58 5-5-3 Condition A 源極應用氧電漿處理製程之IGZO TFTs C-V特性曲線 60 5-5-4 Condition B源極及汲極應用氧電漿處理製程之IGZO TFTs IDS-VGS特性曲線 61 5-5-5 Condition C源極及通道應用氧電漿處理製程之IGZO TFTs IDS-VGS特性曲線 63 5-5-6 Condition D源極應用氧電漿及通道應用氬電漿處理製程之IGZO TFTs IDS-VGS特性曲線 66 第六章 結論與未來研究 68 6-1 結論 68 6-2 未來研究之建議 70 參考文獻 71

    [1] https://andreaporcina.com/2015/05/31/uhd-4k-fullhd-hd/
    [2] Triska, Joshua B. "Atomic layer deposition of nanolaminate high-κ gate dielectrics for amorphous-oxide semiconductor thin film transistors." (2011).
    [3] http://www.electronics-eetimes.com/news/printed-electronics-opens-large-flexible-sensor-design-opportunities
    [4] http://showanywish.com/read/881923325/
    [5] http://www.pida.org.tw/report/1999/00_005/Ch3.pdf
    [6] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., Vol. 72, pp.126501-1–126501-29, 2009.
    [7] G. Neumann, “On the Defect Structure of Zinc-Doped Zinc Oxide,” Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [8] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, Vol. 352, pp. 851-858, 2006.
    [9] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., Vol. 5, pp. 273-288, 2009.
    [10] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., Vol. 45, pp. 4303-4308, 2006.
    [11] Tze-Ching, Chiao-Shun Chuang, Kenji Nomura, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors,” Journal of Information Display, Vol. 9, pp. 21-29, 2008.
    [12] Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” App. Phy. Lett., Vol. 90, pp. 212114-1–212114-3, 2007.
    [13] Chiao-Shun Chuang, Tze-Ching Fung, Barry G. Mullins, Kenji Nomura, Toshio Kamiya, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays,” SID 08 DIGEST, pp. 1215-1218, 2008.
    [14] N. C. Su, S. J. Wang, and Albert Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Electron Device Letters, Vol. 30, pp. 1317-1319, 2009.
    [15] Keun Woo Lee, Kon Yi Heo, Sang Hoon Oh, Abderrafia Moujoud, Gun Hee Kim, and Hyun Jae Kim, “Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend,” Thin Solid Films, Vol. 517, pp. 4011-4014, 2009.
    [16] John Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Institute of Physics, Vol. 69, pp. 327-396, 2006.
    [17] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, Vol. 46, pp. 1537-1544, 1999.
    [18] V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., Vol. 89, pp. 3256-3269, 2001.
    [19] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol. 81, pp. 472-474, 2002.
    [20] S. M. Hu, “Stress-related problems in silicon technology,” Appl. Phys. Lett., Vol. 706, pp. 53-80, 1991.
    [21] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., Vol. 75, pp. 4001- 4003, 1999.
    [22] H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “Effect of Interface Oxide Layer on HfO2 Gate Dielectrics,” IEDM Tech. Dig., Vol. 34, pp. 141-142, 1999.
    [23] K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 11, pp. 2757-2776, 1996.
    [24] Li-ping Feng, Zheng-tang Liu, Ya-Ming Shen, “Compostiional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering,” Vaccum, Vol. 83, pp. 902-905, 2009.
    [25] 王志誠,“碳化鉿金屬閘極搭配高介電係數二氧化鉿電容與場效應電晶體之研製”,國立成功大學微電子工程研究所碩士論文,2008。
    [26] http://www.mdpi.com/2073-4360/6/4/1057/htm
    [27] Ortiz-Conde, A., Sánchez, F. G., Liou, J. J., Cerdeira, A., Estrada, M., and Yue, Y., “A review of recent MOSFET threshold voltage extraction methods.” Microelectronics Reliability, pp. 583-596, 2002
    [28] http://www.kaoduen.com.tw/
    [29] G. K. Reeves AND H. B. Harrison, “Obtaining the Specific Contact Resistance from Transmission Line Model Measurements,” IEEE Electron Device Letters, Vol. EDL-3, No.5, pp. 111-113, 1982.
    [30] http://www.ncku.edu.tw/facility/facility/devices/index_devices.htm
    [31] Kim, Kwan-Soo, et al. "Development of annealing process for solution-derived high performance InGaZnO thin-film transistors." Materials Science and Engineering: B 178.12 (2013): 811-815.

    [32] Kim, Jihoon, et al. "A study on H2 plasma treatment effect on a-IGZO thin film transistor." J. Mater. Res 27.17 (2012).
    [33] Chang, Geng-Wei, et al. "Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress." Applied Physics Letters 100.18 (2012): 182103.
    [34] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. on Electron Devices, Vol. 20, pp. 995-1001, 1973.
    [35] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, pp. 268-270, 2001.
    [36] http://www.pida.org.tw/optolink/
    [37] S. B. Ogale, “Thin films and heterostructures for oxide for oxide electronics,” New York, NY: Springer, 2005.
    [38] C. Jagadish and S. Pearton, “Zinc oxide bulk, thin films and nanostructure,” UK: Elsevier, 2006.
    [39] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., Vol. 98, pp. 041301-1–041301-103, 2005.
    [40] Pearson’s Handbook of Crystallographic Data, pp. 2795-2796, 1985.
    [41] D. J. Leary, J. O. Barnes, and A. G. Jordan, “Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,” J. Electrochem. Soc, Vol. 129, pp. 1382-1387, 1982.
    [42] John Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Institute of Physics, Vol. 69, pp. 327-396, 2006.
    [43] Y. C. Yeo, “Metal gate technology for nanoscaletransistors-materials election and process integration issues,” Thin Solid Films, Vol. 34, pp. 462-463, 2004.
    [44] F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [45] K. A. Ellis, and R. A. Buhrman, “Boron diffusion in silicon oxides and oxynitrides,” J. Electrochem. Soc., Vol. 145, pp. 2068-2069, 1998.
    [46] Raymond T. Tung, "Chemical Bonding and Fermi Level Pinning at Metal-Semiconductor Interfaces," Phys. Rev. Lett., Vol. 84, pp. 6078-6081, 2000.
    [47] Leonard J. Brillson and Yicheng Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys., Vol. 109, pp. 121301-1–121301-33, 2011.
    [48] Chenming Calvin Hu, “Modern semiconductor devices for integrated circuits,” 2011.
    [49] Kim, Jae-Sung, et al. "Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors." Journal of Applied Physics 115.11 (2014): 114503.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE