簡易檢索 / 詳目顯示

研究生: 林俊宏
Lin, Chun-Hung
論文名稱: MnSiN2螢光粉之合成與螢光效能研究
Synthesis of MnSiN2 Phosphor and its Luminescence Properties
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 螢光粉氮化物微波合成法MnSiN2
外文關鍵詞: Phosphor, Nitride, Microwave synthesis, MnSiN2
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在節能與環保的訴求下,開發高效率、省能源並符合環保需求的「綠色」照明光源,在目前國內外都是迫切且重要的研究課題。與以往使用的日光燈及白熾燈相比LED具有以下之優點:高發光效率、低耗電量、設計彈性佳、反應速度快、環保、可平面封裝等優點。目前市場販售之LED照明燈具大多為黃光螢光粉搭配藍光晶片所製成。此種LED發出的光由黃藍兩種光混合而成,由於缺乏紅光,其光色不飽和,演色性差,就視覺而言,光色冷白,市場接受度不高。為提升發光效率並提升市場接受度,此種LED改進之道,即為加入紅光螢光粉。經過世界各國多個實驗室的研究,近年來,已有被認為相當理想且極具應用潛力的紅光螢光粉被開發出來,這些紅光螢光粉就主體晶格的化學組成而言,皆為氮化物螢光粉。其主體晶格主要可分為兩類:M2Si5N8:An+及MAlSiN3:Bm+,其中M為鹼土金屬(離子),An+與Bm+為活化劑離子(主要為稀土金屬離子)。雖然氮化物螢光粉是理想且極具應用潛力的LED紅光螢光材料,可是目前氮化物螢光粉之合成皆需在嚴苛的條件下進行,如高溫、高壓、長時間反應,使用空氣、溼氣敏感或昂貴之反應物及複雜之製程等,由於生產不易、產量小、設備及原物料成本高因而價格昂貴,以致氮化物螢光粉之應用進展受限。本論文研究係本實驗室開發氮化物螢光粉合成製程的一項研究,係引用本實驗室過去建立之微波技術合成氮化物螢光粉,在研究當中發現一新的氮化物主體晶格組成,即MnSiN2。吾人並發現,經由Eu2+離子摻入後可得一發橘紅光之螢光粉。在本論文中,吾人探討實驗參數,如反應溫度及反應物組成等對產物之產率及螢光強度之影響。吾人發現藉由調配反應物的組成比例,可合成出不同螢光強度及波長之MnSiN2:Eu2+螢光粉體,在較佳的條件下,此螢光粉的激發波長範圍為320~500nm,若利用370nm之紫外光或460nm之藍光激發此螢光粉可得到一主峰波長位於590nm及發光範圍介於500~700nm 之放射光譜。

    In the energy saving and environmental demands, the development of high efficiency, energy saving and environmentally friendly lighting needs at home and in public is urgent and important research topic. Compared with conventional lighting, LED has more advantages such as: high luminous efficiency, low power consumption measurement, flexible design, start fast, environmental protection, flat pack and so on. Currently, LEDs, which are sold in the market, are mostly made by yellow phosphor powder with blue chips. This LED mixed yellow and blue light and will be lack of red light, which make its color is not saturated, the color rendering become poor, and visually, the cold white light color, acceptance is not so high in the market. To enhance the luminous efficiency and enhance market acceptance degree, this LED should be improved by added the red phosphor. After a number of laboratory studies around the world in recent years, it has been considered quite satisfaction and highly application potential red phosphors to be developed. These red phosphor host lattice on the chemical composition is concerned as nitride phosphor. Its main lattice can be divided into two categories: M2Si5N8: An+ and MAlSiN3: Bm +, where M is an alkaline earth metal (ions), An+ and Bm+ as the activator ions (primarily rare earth metal ions). Although the nitride phosphor is ideal and have high potential applications of LED red fluorescent material, but at present the synthesis of nitride phosphors are under harsh conditions which must carry out, such as high temperature, high pressure, long reaction, sensitive air and moisture, expensive reactants, complexity of the process, not easy to produce, product is so less, high cost of equipment which resulting in limited application progress nitride phosphors. In the past, our laboratory had already used microwave for some research. We use this skill to synthesized nitride phosphor and in this research found the new host lattice was MnSiN2. Through the doping of Eu2+ ions, we can obtain orange light phosphor powder. In this thesis, we investigate the experimental parameters such as reaction temperature and reactant composition of impact on product yield and the fluorescence intensity. After deploy the composition ratio of the reactants, we can synthesized different MnSiN2:Eu2+ fluorescence intensity and wavelength phosphor powders. This phosphor excitation wavelength range is 320 ~ 500nm. By using the 370nm or 460nm lambda emission, emission peak at 590nm can be obtained with emission spectrum ranges from the 500 ~ 700nm.

    摘要 II Abstract IV 英文延伸要 VI 致謝 X 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 1 1-1 前言 1 1-2 白光發光二極體簡介及應用 2 1-3 研究動機及目的 4 第二章理論基礎與文獻回顧 7 2-1 螢光材料的簡介與分類 7 2-2 發光原理 8 2-3 影響史托克位移的因素 12 2-4 螢光材料的設計 13 2-5 影響螢光效率的因素 15 2-6氮化物螢光材料合成方法簡介 20 2-7 微波加熱原理 25 2-7-1 何謂微波 25 2-7-2 微波加熱原理 26 2-7-3 微波加熱的特點 28 2-7-4 微波效應 30 2-7-5 微波設備組成 30 第三章 實驗方法及設備 35 3-1 實驗藥品 35 3-2 實驗設備及分析儀器 36 3-2-1 壓模成形設備及模具 36 3-2-2 微波合成反應器 37 3-2-3 分析儀器 37 3-3 儀器原理及量測方法 38 3-3-1 晶相分析 38 3-3-2 光學特性分析 39 3-3-3 熱電偶溫度之量測 39 3-3-4 X射線光電子能譜分析 40 3-4 實驗方法及流程 40 3-4-1 反應物製作 40 3-4-2 微波合成反應 41 第四章 結果與討論 43 4-1 反應溫度對產物之影響 43 4-2 銪離子摻雜量對產物之影響 49 4-3 矽、氮化矽之比例對產物的影響 57 4-4 添加劑的組成對產物之影響 63 4-4-1 疊氮化鈉對產物之影響 63 4-4-2 氯化銨對產物之影響 69 4-4-3 尿素對產物之影響 75 4-5 最佳參數之探討 80 第五章 結論 83 參考文獻 86

    參考文獻
    1. Srivastava, A. M. Ronda, C. R. Phosphors, The Elect. Soc. Inter., Summer, (2003) ,48
    2. Zhang, Q. Y. Pita, K. Kam, C.H. Sol-gel derived zinc silicate phosphor films for full-color display application, Jour. Phy. and Chem. Of Solid, (2003) , 64, 333
    3. Leskela, M. Rare earths in electroluminescent and field emission display phosphors, Jour. All. and Comp, (1998) , 275, 702
    4. Ronda, C. R. Justel, T. Nikol, H. Rare earth phosphors: fundamental and applications, Jour. All. and Comp , (1998), 275, 669
    5. Dorenbos, P. Lumin, J. (2003),104, 239-260
    6. White, M.A., Properties of materials. (1999), New York: Oxford University Press, Inc.
    7. Neamen, D.A., Semiconductor physics and devices: basic principles. third ed., ed. Butcher, K. (2003), New York: McGraw-Hill Companies, Inc.
    8. Xie, R.J. and Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials, (2007). 8(7-8). 588-600.
    9. 劉如熹與紀喨勝(民92),紫外光發光二極體用螢光分介紹。台北市:全華科技圖書股份有限公司。
    10. Kitai, A., Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications, ed. Capper, P. Kasap, S. and Willoughby, A. (2008): John Wiley & Sons Ltd.
    11. Liaw, S.K. and Chang, S.Y. Recently Technologies Development of High-Power White Light Emitting Diodes. Instruments Today, (2006). 152.78-86.
    12.王卉宜,“氮化物紅色螢光粉體之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國97 年。
    13. Li, Y.Q. , van Steen, J. van Krevel, J. Botty, G. Delsing, A. DiSalvo, F. de With, G. and Hintzen, H.T. Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors. J. Alloy. Compd (2006), 417 : 273-279.
    14. Piao, X. Horikawa, T, Hanzawa, H. and Machida, K.I. Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting diode illumination. Appl. Phys,Lett. (2006), 88 : 161908
    15. Piao, X. Machida, K.I. Horikawa, T. Hanzawa, H. Shimomura, Y. and Kijima, N. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high temperature synthesis and their luminescent properties. Chem. Mater (2007), 19 .4592-4599.
    16. Lee, W.C., et al., Novel process for combustion synthesis of AlN powder. Journal of Materials Research, (1995). 10(3).774-778.
    17. Lee, W.C. and Chung, S.L. Combustion synthesis of Si3N4 powder. Journal of Materials Research, (1997). 12(3). 805-811.
    18. Hwang, C.C. and Chung, S.L. Combustion synthesis of boron nitride powder.Journal of Materials Research, (1998). 13(3).680-686.
    19. Lin, C.N. and Chung, S.L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research, (2004).19(10).3037-3045.
    20. Chung, S.L., Chang, C.W. and Cadete Santos Aires, F.J. Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research,(2008). 23(10).2720-2726.
    21. 劉如熹,劉宇恆,”發光二極體用氧氮螢光粉介紹”, (2006) pp.39-50.
    22. Skoog , D. A. and Leary, J.J. ”Principles of instrumental analysis” Saunders College Pub., (1992)
    23. Ozawa, L. “Cathodoluminescence”, Kodansha Ltd. Tokyo, (1990)
    24. Goldberg, P. “Luminescence of Inorganic Solids”, Acadamic Press Inc., New York, (1966)
    25. Blasse, G. and Grabmaier, B.C “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany, (1994)
    26. Ropp, R. C. “Luminescence and solid state”, Elsevier Science Publishers, B. V., The Netherlands, (1991)
    27. Atkins, P. Jones, L. Chemistry molecules, Matter, and Change, 3rd edition, (1997)
    28. DeLuca, J. A. J. Chem. Educ.(1980),57, 8, 541
    29. Uheda, K. Hirosaki, N. Yamamoto, H. phys.stat.sol. (a) (2006),203, 2712-2717
    30. Blumenthal, W. R. and Philips, D. S. J. Am. Ceram. Soc.(1996),79, 1407
    31. Li, Y. Q. de With, G. and Hintzen, H. T. J. Lumin (2006).116, 107
    32. Hoppe, H.A. Lutz, H. Morys, P. Schnick, W. Seilmeier, A. J. Phys. Chem. Solids, (2000),61, 2001-2006
    33. Schlieper, T. Milius, W. Schnick, W. Anorg , W. Z. Allg. Chem. (1995),621, 1380
    34. Piao,X. Horikawa, T. Hanzawa, H. Machida, K. Appl. Phys. Lett. (2006),88, 161908
    35. Zhang, H. Horikawa, T. Hanzawa, H. Hamaguchi, A. and Machida, K. J. Electrochem. Soc. (2007),154, J59-J61
    36. Suehiro, T. Hirosaki, N. Terao, R. Tatami, J. Meguro,T. Komeya, K. J. Am. Ceram. Soc. (2003),86, 1046
    37. Suehiro, T. Hirosaki, N. Xie, R.J. and Mitomo, M. Chem. Mater. , (2005), 17, 308-314
    38. Munir, Z.A. Synthesis of high-temperature materials by self-propagating combustion methods. American Ceramic Society Bulletin, (1988). 67(2), 342-349.
    39. Yi, H.C. and Moore, J.J. Self-propagating high-temperature (cimbustion) synthesis (SHS) of powder-compacted materials. Journal of Materials Science, (1990), 25(2B),1159-1168.
    40. Subrahmanyam, J. and Vijayakumar, M. Self-propagating high-temperature synthesis. Journal of Materials Science, (1992), 27(23),6249-6273.
    41. Thostentson, E.T. and Chou, T.W. “Microwave processing:fundamentals and applications ”, Composites: Part A (1999),30, 1055
    42. Von Hippel , A.R. Wiley, J. and Sons, ”Dielectric materials and applications”(161)
    43. 劉岐山,“微波能應用”, 電子工業出版社,(1990)
    44. 汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會(1994)
    45. 張存續,”材料與微波之頻率響應與反應特性”,工業材料雜誌216期
    46. Janny , A. and Kimrey, H. D. Mater. Res. Soc. Proc. (1991),189, 215
    47. Lewis, D. A. Mater. Res. Soc., Proc. (1992),269, 21
    48. Janny, A. Calhoun , C. L. and Kimrey, H. D. Ceram. Trans. (1991),21, 311
    49. Janny , M. A. and Kimrey, H. D. Ceramic Powder Science, vol. II, American ceramic Society, (1988),919
    50. Fathi, Z. Ahmed, I. Simmons, J.H. Clark, D. E. and Loding, A. R. Ceram. Trans., (1991),21, 623
    51. Brooske, J. H. Cooper, R. F. Dobson, I. and McCaubhan, L. Ceram. Trans. (1991),21, 185
    52. Freeman, S. Booske , J. H. Cooper, R. F. Meng, B. Kieffer, J. and Reardon, B. J. Proceedings of the workshop on microwave-absorbing materials for accelerators, Newport News (1993)
    53. Wang, J. Binner, J. Vaidhyanathan, B. Joomun, N. Kilner, J. Dimitrakis, G. and Cross, T. E. J.Am Ceram. Soc. (2006),89, 1977
    54. Mizuno, M. Obata, S. Takayama, S. Ito, S. Kato, N. Hirai, T. and Sato, M.
    Euro, J. Ceram. Soc. (2004),24, 387
    55. Tsuji, K. X-Ray Technology, in Kirk‑Othmer Encyclopedia of Chemical Technology. (2007), John Wiley & Sons, Inc.
    56. Esmaeilzadeh, S. , Hålenius, U. and Valldor, M. Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN2. Chem. Mater. (2006), 18, 2713-2718
    57. Shin, Y. C. , Kim, E.H. , Leem, S.J. and Kim, T.G. Optical Properties of Europium-Silicate Thin Films Fabricated on Different SiOx Intermediate Layer. Journal of the Korean Physical Society, (2007),Vol. 50, No. 6, 1764∼1768
    58. Chen, K., et al., Microstructure and formation mechanism of combustion-synthesized rodlike Ca-alpha-sialon crystals. Journal of Materials Research, (2001).16(7),1928-1934.
    59. Liu, G., et al., Effect of diluents and NH4F additive on the combustion synthesis of
    Yb-alpha-SiAlON. Journal of the European Ceramic Society, (2005). 25(14) 3361-3366.

    無法下載圖示 校內:2017-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE