| 研究生: |
陳煥煜 Chen, Huan-Yu |
|---|---|
| 論文名稱: |
使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討 Process Development for Combustion Synthesis of Aluminum Nitride Using Aluminum Powders with Different Morphology and Study on the Reaction Mechanism |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 燃燒合成法 、氮化鋁 |
| 外文關鍵詞: | Combustion synthesis, Aluminum Nitride |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前本實驗室以燃燒合成法製備氮化鋁粉其技術已相當成熟,其合成所需之原料-鋁粉,規格為粒狀30~80 μm,純度為99.9 %,雖其純度高且反應性佳,但價格昂貴,為了降低生產成本增加本實驗室氮化鋁生產的競爭力並避免鋁粉來源被壟斷,本論文研究使用不同來源鋁粉以燃燒合成法合成氮化鋁,經探尋數種市售之鋁粉後,選擇兩種價位較低之鋁粉,即粒狀10~50 μm,純度99.0 %和粒狀10~30 μm,純度99.5 %。先前研究指出此兩種鋁粉易熔聚且產物氧含量高。本論文研究主要以粒狀10~50 μm之鋁粉為主,其餘兩種鋁粉為輔,利用不同的表面處理來探討合成反應之燃燒現象,同時使用SEM觀察其晶體成長以作為不同表面處理影響的佐證,並藉由改善氮氣流通通道來克服因堆積密度高所造成較差的反應性,最後合成出與舊有鋁粉的製程相近氧含量的氮化鋁,研磨前氧含量介於0.3~0.6 wt%,研磨至3~4 μm氧含量約在1.4 wt%。
The technique for synthesis of aluminum nitride powder by self-propagating high temperature synthesis (SHS) has been well developed in our laboratory. The mostly used aluminum powder for the synthesis has been sphere in shape with dimensions of 30~80 μm, and a purity of 99.9 %. This aluminum powder has a high purity and a good reactivity but is relatively costly. In order to reduce the production cost and avoid the monopolization of source of aluminum powder, we searched for other sources for aluminum powder. Two different types of aluminum powder were investigated for synthesis of aluminum nitride: (1) irregular particle, 10~50 μm on average and 99.0 % purity; (2) irregular particle, 10~30 μm and 99.5 % purity. Previous studies indicate that these two type of aluminum powder can easily form aggregates during synthesis reaction and oxygen contents of the products are high. This thesis research focused on synthesis of aluminum nitride powder by using the aluminum powder with 10~50 μm in size, and the results were compared with experimental results of other aluminum powders. The combustion phenomena were found to be related to different surface modification of the aluminum powders, and the results were also proved by SEM observation. Beside, the poor reactivity due to high packing density of the aluminum powder was improved by setting an porous aluminum tube in the reactant compact. Using the aluminum powder and the synthesis technique developed in the present study, the product has an oxygen content of 0.3~0.6 wt% before milling, and about 1.4 wt% after milling.
1. 汪建民, “陶瓷技術手冊Ceramic technology handbook”, 中華民國科技發展協會, pp.781-783(1994).
2. 劉宇桓和劉如熹, 神奇的陶瓷材料, 科學發展, 408期, pp.6-11(2006).
3. L.M. Sheppard, “Aluminum nitride. A versatile bit challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, p.1801-1812(1990).
4. N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, pp.883-887 (1989).
5. G.A. Slack, R.A. Tanzilli, R.O. Pohl and J.W. Vandersande, “Intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry Solids, Vol.48, No.7, pp.641-642 (1987).
6. E. Man and F. Yan, Ame. Cera. Soc., Inc. Vol.26, pp.19-54(1994).
7. F. Miyashiro, N. Iwase, A. Tsuqe, and F. Ueno, “High thermal conductivity aluminum nitride ceramic substrates and packages”, Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, No.2, pp.313-319(1990).
8. G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, pp.463-473 (1993).
9. F.J.-H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Process, Vol.10, No.4, pp.717-775(1995).
10. A.G. Merzhanov and I. P. Borovinskaya, “New class of combustion processes”, Combustion Science Technology, Vol.10, No.5-6, pp.195-201 (1975).
11. J.F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, in Procrrdings of the 6th Annual Conference on Composites and advances Ceramic Materials: Ceramic Engineering and Science Proceedings, Vol.3, p.519(1982).
12. S. Kumar, “Self-propagating high temperature synthesis of refractory nitrides, carbides and borides”, Key Engineering Materials, Vol. 56-57,pp.183-188(1991).
13. A.G. Merzhanov, ”Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings”, Combustion and Plasma Synthesis of High-Temperature Materials, , pp.1-53(1990).
14. B.I. Khachin and A.G. Merzhanov, “Theory of Thermal Propagating of a Chemical Reaction Front”, Combustion, Explosion, and Shock Waves, Vol.2, No.3, pp.22-27(1962).
15. A.G. Strunina, T.M. Martemyanova, V.V. Barzykin and V.I. Ermakov, “Ignition of Gasless systems by a Combustion Wave”, Combustion, Explosion, and Shock Waves, Vol.10, No.4, pp.449-455 (1974).
16. B.V. Novozhilov, ”Burning Velocity of Propagating Front with Exothermic Reaction in Condensed Phase”, Dokl.Akad.Nauk SSSR, Vol.141, pp.151-153(1961).
17. A.G. Merzhanov, “The Theory of Stable Homogeneous Combustion of Condensed Substances”, Combustion and Flame, Vol.13, No.2, pp.143-156 (1969).
18. J. Subrahmanyam, M. Vijayakumar, “Review Self-propagating high-temperature synthesis”, Journal of Materials Science, Vol.27, No.23, pp.6249-6273(1992).
19. 劉素英, “自蔓延高溫合成(SHS) TiN粉末的研究”, 自蔓延高溫合成技術研究進展, 武漢工業大學出版社, pp.116-122(1994).
20. 張學軍, 鄭永才和韓杰才, “氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響”, 複合材料學報 Acta Materiae Compositae Sinica, 第23卷, 第3期, pp.123-126(2006).
21. 張寶林, 庄漢銳和符錫仁, “硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理”, 自蔓延高溫合成技術研究進展, 武漢工業大學出版社, pp.131-141(1994).
22. E.J. Langham and B. J. Mason, “The Heterogeneous and Homogeneous Nucleation of Supercooled Water”, Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, Vol.247, pp.493-504 (1958).
23. P.B. Price, “Nonbasal Glide in Dislocation-Free Cadmium Crystals. I”, Journal of Applied Physics, Vol.32, No.9, pp.1746-1750(1961).
24. Albert P. Levitt, “Whisker Technology”, pp.27-37(1999).
25. W.-S. Jung and H.UK Joo, “Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method”, Journal of Crystal Growth, Vol.285, pp.566-571(2005).
26. H. Wang, D.O. Northwood, J. Han and S. Du, “Combustion synthesis of AlN whiskers”, Journal of Materials Science, Vol.41, No.6, pp.1697-1703 (2006)
27. 陳政權, “燃燒合成氮化鋁-反應機構探討,氮化鋁形態及成長機構”, 國立成功大學 化學工程研究所 碩士論文, pp.125(2001).
28. R. Fu, K. Chen, X. Xu and J.M.F. Ferreira, “Highly crystalline AlN synthesized by SHS method”, Materials Letters, Vol.59, pp.2605-2609 (2005).
29. R. Fu, K. Chen, S. Agathopoulos and J.M.F. Ferreira, “Factors which affect the morphology of AlN particle made by self-propagating high-temperature synthesis(SHS)”, Journal of Crystal Growth, Vol.296, pp.97-103(2006).
30. 傅正義, 王為民和袁潤章, “自蔓延高溫合成(SHS)過成的點火模型與分析”, 自蔓延高溫合成技術研究進展, 武漢工業大學出版社, pp.6-11(1994).
校內:2016-07-13公開