| 研究生: |
陳信綱 Chen, Shin-Gang |
|---|---|
| 論文名稱: |
360度壓控式相移器設計與實作 360 degree Voltage Control Phase Shifter Design and Fabrication |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 史奇夫曼 、耦合器 、反射式 、相移器 |
| 外文關鍵詞: | coupler, schiffman, reflective type, phase shifter |
| 相關次數: | 點閱:149 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是探討應用在2.4GHz的可調變電壓控制全域相移電路,
利用Fr4電路板來完成。Fr4電路板的基本介電常數為4.3,厚度=1mm,銅
箔層高度0.035mm,介電常數損耗約為0.018,在本論文中研究各種縮小型
耦合器來製做相移器以達到縮小面積的目的,其中包括了T型傳輸線支幹
耦合器、阻抗不連續型支幹耦合器、以及超小型耦合器。其中T型傳輸線
支幹耦合器的特性如下,雙阜輸出量分別為-3.416dB和-3.82dB,輸出角
度為145.6度和-127.3度,回傳損耗為-17.81dB,面積約14.14mm X
16.4mm(中心區域),是傳統支幹型耦合器(19.4mmX24.33mm)的49.13%,阻
抗不連續型支幹耦合器特性如下,雙阜輸出量分別是-3.567dB和-3.58
dB,輸出角度為164.1和-116.1度,回傳損耗是-19.88dB,面積大小約為
13.9mm X16.24mm (中心區域),大約是傳統枝幹耦合器(19.4mmX24.33mm)
的47.82%,超小型耦合器特性如下,雙阜輸出量為-3.39dB和-3.45dB,雙
阜輸出角度分別是168.9度和-94.41度,回傳損耗為-18.04dB,面積大小
為7mmX15.3mm,約為傳統型支幹耦合器的22.69%。另設計有方形鼠圈,其
主要參數如下,雙阜輸出量分別為-3.767dB和-4.437dB。輸出角度則分別
是49.9度和-120.9度。回傳損耗則是-15.02dB,面積約為16.9141 mm X
16.9141mmXπ為傳統鼠圈的19.618%左右。在本論文中主要採取兩種方法
來設計相移器,可分 為Type-B和Type-C型,其中Type-B相移器在0到
16.5伏的電壓變動時,相角變化從6.6度到8.875度(轉超過一圈)一共是
362.27度。相角對輸入電壓波形圖在100度到320度之間較接近直線,涵
蓋約220度的線性區域,穿越損耗變動範圍集中在-2.1dB到-2.65dB之間,
回傳損耗介在-10.76dB到-14.04dB之間,面積大小則是2.4cmX3.1cm。
Type-C型相移器在0到22伏電壓變動時,相角可以從39.4度變到406度,
一共涵蓋366.6度的範圍,相角&電壓圖在145度到350度的範圍皆近直
線,故涵蓋205度的線性區域,穿越損耗會在-2dB到-2.5dB之間波動,回
傳損耗會在-7.45dB到-8.108dB之間波動,面積大小則是2.43cmX3.164cm。
The main purpose of this thesis is to investigate 360 degree tunable voltage controlled phase shifter at 2.4Ghz. All of these Rf circuits are fabricated with Fr4 pcboard. The basic parameters of the Fr4 pcboard are shown as follows. The dielectric constant is 4.3. Board thickness is 1mm. Copper layer thickness is 0.035mm. Losstangent is 0.018. In this thesis we present several kinds of area reduced couplers which can be used to reduce the area of the phase shifter. These couplers are T-shape transmission line coupler, super small coupler , and impedance discontinuous coupler. The parameters of T-shape transmission line coupler are shown as follows. Output magnitude are -3.416dB and -3.82dB.Output phase are 145.6 and -127.3 degree. Returnloss is -17.81dB.The area is 49.13% (14.14mm X16.4mm) as compared to conventional one. The parameters of impedance discontinuous coupler are shown as follows. Output magnitude are -3.567dB and -3.58dB. Output phase are 164.1and-116.1degree.Returnloss is -19.88dB.The area is 47.82% (19.4mmX 24.33 mm)as compared to the traditional one. The parameters of super small coupler are shown as fllows. Output magnitude are -3.39dB and-3.45dB.Output angle are 168.9 and -94.41 degree. Returnloss is -18.04dB. The area is 22.69%(7mmX15.3mm) as compared to conventional one. In addition,square retrace coupler can also be used for making reflective type phase shifter. The parameters of square retrace are shown as follows. Output magnitude are -3.767dB and -4.437dB.Output phase are 49.9 and 120.9 degree. Returnloss is -15.02dB.The area is 19.618%(16.9141mmX16.9141mmX )as compared to traditional ratrace coupler .There are two ways in the thesis of fabricating analog phase shifter. They are called Type-B and Type-C phase shifters. The size of Type-B and Type-C phase shifter is2.4cmX3.1cm and 2.43cmX3.164cm.When controlvoltage (Between 0v and 16.5v) applied to Type-B phase shifter. The phase angle can be tuned from 6.6 degree to 368.875 degree. The total tunable range is 362.275 degree. Insertion loss is ranging from -2.1dB to -2.65dB. Returnloss is ranging from -10.76dB to -14.04dB.The angle-voltage curve performances as straight line between 100 degree and 320 degree. Type-B phase shifter has 220 degree linear control range. When controlvoltage (Between 0v and 22v) applied to Type-C phase shifter. The phase angle can be tuned from 39.4degree to 406 degree. The total tuning range is 366.6 degree. Insertionloss is ranging from-2dB to -2.5dB. Returnloss is ranging from -7.45dB to -8.108dB. The angle-voltage curve performances as a straight line between 145 degree and 350 degree. Type-C phase shifter has 205 degree linear control range.
[1] Shry-Sann Liao, Pou-Tou Sun, Nien-Chung Chin, and Jen-Tee Peng “A Novel Compact-Size Branch-Line Coupler” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 15, NO. 9, SEPTEMBER 2005
[2] Kwok-Keung M. Cheng, Senior Member, IEEE, and Fai-Leung Wong, Student Member, IEEE “A Novel Rat Race Coupler Design for Dual-Band Applications” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 15, NO. 8, AUGUST 2005
[3] JosC Luis Ramos Quirarte, and J. Piotr Starski, Member, IEEE “Novel Schiffman Phase Shifters” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 1, JANUARY 1993
[4] Zou Yongzhuo1, Hu Xin1, Ling Ti1, Lin Zhili1 “New differential phase shifters using novel right-handed metamaterial structures” Journal of Zhejiang University SCIENCE A ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
[5] Valery Petrovich Meschanov, Irina Vadimovna Metelnikova, Vladimir
Dmitrievich Tupikin, and Galinda Georgievna Chumaevskaya “A New Structure of Microwave Ultrawide-Band Differential Phase Shifter” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 5, MAY 1994
[6] Mohamed H. Awida, Amr M. E. Safwat, and Hadia El-Hennawy “COMPACT RAT-RACE HYBRID COUPLER USING MEANDER SPACEFILLING CURVES” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 48, No. 3, March 2006
[7] Timothy M. Hancock, Member, IEEE, and Gabriel M. Rebeiz, Fellow, IEEE “A 12-GHz SiGe Phase Shifter With Integrated LNA” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005
[8] Se-Ho Kim,Young-Bae Park,Han-Nah Joh ,Young Yun, Kyu-Ho Park“Minaturized Rf components employing Pi-type multiple coupled microstripline structure”The23rd international technical conference on circuit system, computer and communications(ITC-CSCC 2008)
[9] Kae-Oh Sun, Sung-Jin Ho, Chih-Chuan Yen, and Daniel van der Weide, “A Compact Branch-Line Coupler Using Discontinuous Microstrip Lines” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 15, NO. 8, AUGUST 2005
[10] Giancarlo Bartolucci1 “SINGLE-SWITCH LOADED-LINE PHASE SHIFTER: THE SHUNT-CONNECTED CONFIGURATION” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 14, No. 2, February 5 1997
[11] Robert V.Garver “360 varactor linear phase modulator” IEEE transaction on microwave theory and techniques, vol. MTT17, NO.3, march 1969
[12] R.K. Settaluri, G. Sundberg, A. Weisshaar, and V.K. Tripathi, Compact folded line rat-race hybrid couplers, IEEE Trans Microwave Guided Wave Lett 10 (2000), 61–63.
[13] K.W. Eccleston and S.H.M. Ong, Compact planar microstrip line branch-line and rat-race coupler, IEEE Trans Microwave Theory Tech 51 (2003), 2119–2125.
[14] Y.J. Sung, C.S. Ahn, and Y.-S. Kim, Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure, IEEE Microwave Wireless Compon Lett 14 (2004), 7–9.
[15] H. Ghali, and T.A. Moselhy, Miniaturized fractal rat-race, branch-line and coupled-line hybrids, IEEE Trans Microwave Theory Tech 21 (2004), 2513–2520
[16] E.G. Cristal, Meander-line and hybrid meander-line transformers,IEEE Trans Microwave Theory Tech 52 (1973), 69–76.
[17] K. M. Shun, Q. Xue, and C. H. Chan, IEEE Microw. Wirel. Compon. Lett. 11(6), 258–260 (2001), Jun.
[18] F. Zhang, J. Z. Gu, C. Y. Gu, L. N. Shi, C. F. Li, and X. W. Sun, Electron. Lett. 42(8), 472–474 (2006),Apr.
[19] F. Giannini and L. Scucchia, “A double frequency 180o lumped element hybrid”, Microwave and Optical Tech. Lett., Vol. 33, pp.247-251, May 2002.
[20] S. S. Liao, “A Novel reduced size Rat-race coupler using stepped impedance structure”, Microwave and Millimeter Wave Technology,2004. ICMMT 4th International Conference on, Proceedings, Page(s):328 – 331, 18-21 Aug. 2004
[21] Fujii, K., Hara, Y., Shibuya, Y., Sakai, T., and Takano, Y., A highly integrated
T/R module for active paced array antennas," Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 77{80, 1998.
[22] Green, C. R., Lane, A. A., Shukla, R., and Tombs, P. N., GaAs MMICs for
use in phased array radar T/R modules," Proc. IEE Colloq. Electronically Scanned Antennas, pp. 6{8, 1999.
[23] Garver, R. V., Broad-band diode phase shifters," IEEE Transactions on Microwave Theory and Techniques, vol. 20, pp. 314{323, May 1972.
[24] DeNatale, J., Mihailovich, R., andWaldrop, J., Techniques for reliability anal-
ysis of RF MEMS switch," Proc. IEEE Int. Reliability Physics Symp, pp. 116{121,200
[25] Comeau, J. P., Morton, M., Cressler, J. D., Papapolymerou, J., and
Mitchell, M., A high-linearity 5-bit, X-band SiGe HBT phase shifter," To be pub-lished in IEEE MTT-S Int. Microwave Symp. Dig., June 2006
[26] Chan, E., Garikipati, K., and Dutton, R., Characterization of contact elec-
tromechanics through capacitance-voltage measurements and simulations," J. Micro-electromechanical Systems, vol. 8, pp. 208{217, 1998.
[27] Carpentier, J., Gellida, S., Gloria, D., Morin, G., and Jaouenr, H., Com-
parison between s-parameter measurements and 2D electromagnetic simulations for microstrip transmission lines on BiCMOS process," Proceedings of the IEEE Micro-electronic Test Structures Conference, pp. 235{240, Mar 2000.
[28] Carpentier, J., Gellida, S., Gloria, D., Morin, G., and Jaouenr, H., Com-
parison between s-parameter measurements and 2D electromagnetic simulations for microstrip transmission lines on BiCMOS process," Proceedings of the IEEE Micro-electronic Test Structures Conference, pp. 235{240, Mar 2000.
[29] Kingsley, N., Bhattacharya, S., and Papapolymerou, J., Moisture lifetime
testing of RF MEMS switches packaged in liquid crystal polymer," IEEE Transactionson Components, Packaging, and Manufacturing Technology, Jan 2006.
[30] Morton, M., Comeau, J., Cressler, J., Mitchell, M., and Papapolymerou,
J., A 5-bit, silicon-based, X-band phase shifter using a hybrid pi/t high-pass/low-pass topology," Submitted to IEE Proceedings Microwaves, Antennas and Propagation, Mar 2007.
[31] Scardelletti, M., Ponchak, G., Zaman, A., and Lee, R., RF MEMS phase
shifters and their application in phase array antennas," Wireless and Microwave Tech-nology, 2005. WAMICON 2005. The 2005 IEEE Annual Conference, pp. 191{194,2005.
[32] Wang, G., RF MEMS switches with novel materials and micromachining techniques for soc/sop RF front ends. PhD thesis, Georgia Institute of Technology, 2006.
[33] Yuan, X., Peng, Z., Hwang, J., Forehand, D., and Goldsmith, C., A transient
spice model for dielectric-charging e®ects in rf mems capacitive switches," Electron Devices, IEEE Transactions on, vol. 53, pp. 2641{2648, Oct 2006.
[34] Zhu, J., Yu-Yuan, W., Chen, C., Zhang, Y., and Lu, L., A compact 5-bit
switched-line digital MEMS phase shifter," Nano/Micro Engineered and Molecular Sys-tems, 2006. NEMS '06. 1st IEEE International Conference on, pp. 623{626, Jan 2006