| 研究生: |
馬寧娣 Hapsari, Hermala Nindya |
|---|---|
| 論文名稱: |
添加廚餘堆肥細菌與真菌族群整治不同埋齡之石油碳氫化物汙染土壤 Bioremediation Study of Aged Total Petroleum Hydrocarbon (TPH) Contaminated Soil with Kitchen Waste (KW) Compost and Fungi Consortium Amendment |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 生物復育 、生物添加 、粉質黏土 、廚餘堆肥 、真菌 |
| 外文關鍵詞: | Total Petroleum Hydrocarbon (TPH), diesel, bioaugmentation, silty clay texture, kitchen waste (KW) compost, fungi |
| 相關次數: | 點閱:146 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用系統環境分子生物復育技術以促進兩階段生物復育法的效能,利用添加廚餘廢棄物與木屑混拌腐熟堆肥至受石油碳氫化合物汙染的土壤中是項新穎的生物處理方法,廚餘腐熟堆肥的添加除了作為土質改良劑外、當中的真菌族群亦作為生物添加以促使石油碳氫化合物的生物降解。實驗用的土壤採樣自煉油廠汙染場址,依受污染土壤中總碳氫化合物的碳數和分子量可分成低碳數的砂質壤土(LC)、高碳數的粉質黏土(HC)、以及兩者混和後的綜合性碳數土壤(MC)。實驗室前人研究中探討在不同總有機碳下添加廚餘堆肥對總石油碳氫化合物的降解情形,證實有助於降解低碳數部份。在第一階段,本研究分別添加1.5%和3%廚餘堆肥(w/w)到不同土壤中,判定省時又能降低成本的最佳操作條件。
第一階段的結果顯示添加廚餘堆肥不但提高了降解效率、微生物族群的多樣性也有所提升(包含總異營菌-THB、碳氫化合物降解菌-HDB、以及真菌群)。添加3%廚餘堆肥的低碳數土壤反應槽(LC-2)有最佳的降解表現,降解率高達77%;然而高碳數以及混和的綜合碳數反應槽(HC, MC)降解速率則呈現緩慢遲滯。結果顯示和粉質黏土壤相比,微生物生長較適應於砂質壤土的環境下、總石油碳氫化合物也比較容易被微生物所降解。
為了促進先前土壤反應槽中高分子量碳氫化合物的降解效率,在第二階段中,另外加入了五種已知可降解石油碳氫化合物的真菌族群。而結果亦顯示添加真菌可以促進生物復育的效率,尤其是砂質壤土的環境下。真菌群的添加也造就THB、HDB、以及總異營真菌群THF數量上的成長,然而真菌族群往往在加入反應槽後的20-40天內衰減,推測為細菌和真菌群競爭碳源(石油碳氫化合物)的消長結果。添加真菌群的目的是要降解石油碳氫化合物中的芳香族、resin和極性物質,但對於高碳數及混和綜合碳數反應槽依然無法有效降解之。在第二階段後,混和的綜合碳數土壤反應槽(MC-2)的總石油碳氫化合物降解率僅65%、高碳數反應槽(HC-2)降解率為72%、反觀低碳數反應槽(LC-1,LC-2)則有97%的降解率。針對上述結果另外做一實驗,目標為最佳化粉質黏土下受新鮮柴油汙染的降解率表現,最佳化結果為添加5%含真菌群的廚餘堆肥(KWF)有最高的降解效率,在63天操作下就有91%的降解效率。
利用分子生物偵測技術的結果,可以確認原生的油降解菌和真菌。在LC, MC, HC反應槽中的主要優勢細菌為Sphingomonas sp. ;在第三階段的CT, KW, F, KWF反應槽則是以Acinetobacter junii 為優勢種;三個階段中皆以Candida 和 Fusarium為主要優勢真菌群。當廚餘堆肥或真菌族群加入反應槽中時,土壤菌相會改變,但菌相多樣性則會隨碳源的消耗而減少。
Two phases of bioremediation technologies, Kitchen waste (KW) compost amendments and bioaugmentation by adding fungi consortium were a part of an innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) which developed as an integrated bioremediation technology in order to enhance the Total Petroleum Hydrocarbon (TPH) degradation from aged TPH contaminated soil. The contaminated soil were taken from an oil production plant exposed with contaminant for a long time and divided into Low Carbon (LC) with loamy sand texture contaminated with diesel oil (C10~C28), High Carbon (HC) with silty clay texture contaminated with fuel oil (C10~C40) and combination between LC and HC called Mixed Carbon (MC) based on their molecular weight carbon number. Previous study in our lab investigated the TPH degradation using KW compost with different levels of Total Organic Carbon (TOC). In present study 1.5% and 3% of KW compost (w/w) were applied in different aged TPH contaminated soil at batch 1 (day 0-77) to determine the optimal strategy with time saving and cost effective.
The result from batch 1 (Day 0-77) study showed that adding KW compost enhanced not only the degradation efficiency but also the microbial population intensively (the Total Heterotrophic bacteria (THB), Hydrocarbon Degrading Bacteria (HDB) and Fungi). The best degradation performance achieved was 77% in LC-2 bioreactors with 3% of KW compost amendment. Slow degradation was detected on High Carbon and Mixed Carbon bioreactors respectively. Loamy sand texture provided more favorable conditions for the growth of microorganisms capable to degrade TPH than the silty clay texture. The loamy sand texture also made contaminant (TPH) more accessible and available to be degraded by microorganisms rather than silty clay texture.
In order to enhance the degradation of high molecular weight hydrocarbon in previous soil bioreactors, five strains of fungi consortium were applied at batch 1 (Day 77-192). The result showed that adding fungi enhanced bioremediation efficiency in the aged TPH contaminated soil especially in loamy sand soil texture. Fungi consortium amendment also enhanced the THB, HDB and also THF population growth. But Fungi growth easily depleted within approximately 20-40 days after they were introduced into the bioreactors because there was a competition between bacteria and fungi to utilize the contaminant as their carbon sources. The purpose of adding fungi consortium to degrade the aromatic, resin and polar compounds was not very successful applying in Mixed Carbon and High Carbon bioreactors the best TPH degradation was 65% in MC-2 bioreactor and 72% in HC-2 bioreactor whilst 97% TPH degradation detected in LC-1 and LC-2 bioreactors.
Another study being conducted to find the optimal strategy of TPH degradation in fresh diesel oil contaminated soil with silty clay texture, the best bioremediation performance was 91% during 63 days study could be achieved if we combined 5% of KW compost with fungi consortium (KWF).
The result of molecular biomonitoring confirmed the existence of indigenous oil degrading bacteria and fungi. Sphingomonas sp. was detected as the dominant bacteria existed in LC, MC and HC series bioreactors whilst in batch 2 study, Acinetobacter junii was dominant in CT,KW,F and KWF bioreactors. Candida and Fusarium were two dominant genus existed in all bioreactors during batch 1 and 2 study. In particular when KW compost and fungi consortium were introduced in bioreactors, the diversity of bacteria and fungi become more diverse but their diversity will become less when their carbon sources were consumed.
Amellal, N., Portal, J.M., Berthelin,J., Effect of Soil Strucure on the Bioavailability of Polycyclic Aromatic Hydrocarbons Within Aggregates of a contaminated soil. Applied Geochemistry 16: 1611-1619 (2001).
Anastasi, A., Varese, G. C., & Marchisio, V. F. Isolation and identification of fungal communities in compost and vermicompost. Mycologia, 97(1), 33-44. (2005).
Anastasi, A., Varese, G. C., Voyron, S., Scannerini, S., & Marchisio, V. F. Characterization of fungal biodiversity in compost and vermicompost. Compost Science & Utilization, 12(2), 185-191. (2004).
Anderson W. Innovative site remediation technology : bioremediation, Am.Acad. Environ.Eng. 1 (1995)
April, T. M., Abbott, S. P., Foght, J. M. and Currah, R. S., Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Canadian Journal of Microbiology 44(3): 270-278(1998).
Atagana, H. I. Biodegradation of phenol,o-cresol, m-cresol and p-cresol by indigebous soil fungi in soil contaminated by creosote. World Journal of Microbiology and Biotechnology ,20: 851-858. (2004).
Atagana, H. I. Compost bioremediation of hydrocarbon-contaminated soil inoculated with organic manure. African Journal of Biotechnology, 7(10), 1516-1525. (2008).
Atlas, R. M., Microbial-Degradation of Petroleum-Hydrocarbons - an Environmental Perspective. Microbiological Reviews 45(1): 180-209(1981).
Atlas, R. M., Petroleum Microbiology. Macmillan Publishing Company New York(1984).
Atlas, R. M., Anassessment of the biodegradation of pertoleum in the Arctic. Microbial Ecology, Springer-Verlag,Berlin,: 86-90(1987).
Atlas, R. M., Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin 31(4-12): 178-182(1995).
Banat, I. M., Makkar, R. S. and Cameotra, S. S., Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53(5): 495-508(2000).
Baraniecki, C.A., Aislabie J., Foght J.M., Characterization of sphingomonas sp. Ant 17 an aromatic hydrocarbon-degrading bacteria isolated from Antartic soil. Microb ecol 43: 44-54 (2002).
Bento, F. M. and Gaylarde, C. C., Biodeterioration of stored diesel oil: studies in Brazil. International Biodeterioration & Biodegradation 47(2): 107-112(2001).
Bento, F. M. Camargo F.A. de O., Okeke B.C., Frankenberger Jr. W.T., Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Mirobiological research 160(3) : 249-255 (2004).
Bidlan, R. and Manonmani, H. K., Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochemistry 38(1): 49-56(2002).
Bossert, I and Bartha, R, The fate of petroleum in soil ecosystems. In: Atlas RM (Ed.). Petroleum Microbiology Macmillan Publishing Company, New York: 435-476(1984).
Chaîneau, C.H., Morel, J. , Dupont, J., Bury, E. and Oudot, J., Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. The Science of the Total Environment 227(2-3): 237-247(1999).
Chaîneau, C.H., Rougeux, G., Yéprémian, C. and Oudot, J., Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry 37(8): 1490-1497(2005).
Chaillan, F., Chaîneau, C.H., Point, V., Saliot, A. and Oudot, J., Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environmental Pollution 144(1): 255-265(2006).
Chaillan, F., Gugger, M., Saliot, A., CoutÃÃ, A. and Oudot, J., Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10): 1574-1582(2006).
Chaillan, Frédéric, Le Flèche, Anne, Bury, Edith, Phantavong, Y-hui, Grimont, Patrick, Saliot, Alain and Oudot, Jean, Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology 155(7): 587-595(2004).
Chaineau, C. H., Morel, J.-L. and Oudot, J., Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 33(3): 145A(1996).
Chaineau, C. H., Morel, J. L. and Oudot, J., Microbial-Degradation in Soil Microcosms of Fuel-Oil Hydrocarbons from Drilling Cuttings. Environmental Science & Technology 29(6): 1615-1621(1995).
Che, M.D. Conservative Cost Estimate Including Investigation and Monitoring Expenses. Soil and Groundwater Remediation Conference Proceeding, Taipei, Taiwan p.73(2002).
Colwell, RR and Walker, JD, Ecological aspects of microbial degradation of petro leum in the marine environment. CRC critical reviews in microbiology 15: 423-445(1977).
Cooper, DG and Zajic, JE, Surface-active compounds from microorganisms. Advances in applied microbiology 26: 229-253(1980).
EPA, US, Aerobic Biodegradation of Oily Wastes A Field Guidance Book For Federal On-scene Coordinators. (2003).
Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3-49. (2007).
Gandolfi, I., Sicolo, M., Franzetti, A., Fontanarosa, E., Santagostino, A., & Bestetti, G. Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresource Technology, 101(2), 568-575. (2010).
Gilgado, F., Cano, J., Gene, J. and Guarro, J., Molecular phylogeny of the Pseudallescheria boydii species complex: Proposal of two new species. Journal of Clinical Microbiology 43(10): 4930-4942(2005).
Gourlay C, Tusseau-Vuillemin MH, Garric J, Mouchel JM Effect of dissolved organic matter of various origins and biodegradability on the bioaccumulation of polycyclic aromatic hydrocarbons in Daphnia magna. Environ Toxicol Chem 22:288–1294(2003).
Haderlein, A., Legros, R., and Ramsay, B. Enhancing pyrene mineralization rates in contaminated soil by addition of composted soil or humic acids. Appl. Microbiol. Biotechnol. 56: 555–559. (2001).
Hantula J., Vainio, E.J., Direct analysis of wood-inhibiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104 (8):927-936 (2000).
Herman, D. C., Artiola, J. F. and Miller, R. M., Removal of Cadmium, Lead, and Zinc Fron Soil by a Rhamnolipid Biosurfactant. Environmental Science & Technology 29(9): 2280-2285(1995).
Hesnawi, R. M., & McCartney, D. M. Impact of compost amendments and operating temperature on diesel fuel bioremediation. Journal of Environmental Engineering and Science, 5(1), 37-45. (2006).
In BH, Park JS, Namkoong W, Kim JD, Ko BI.Effect of sewage sludge mixing ratio on composting of TNT-contaminated soil. Ind Eng Chem Res 13:190–197.(2007).
Isabella, O., Moll, F., Krc, J., & Zeman, M. Modulated surface textures using zinc-oxide films for solar cells applications. Physica Status Solidi a-Applications and Materials Science, 207(3), 642-646. (2010).
Janzen RA, Xing B, Gomez CC, Salloum MJ, Drijber RA, McGill WB. Compost extract enhances desorption of a-naphtol and naphthalene from pristine and contaminated soil. Soil Biol Biochem 28:1089–1098(1996)
Kanga, S. A., Bonner, J. S., Page, C. A., Mllls, M. A. and Autenrieth, R. L., Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environmental Science & Technology 31(2): 556-561(1997).
Kastner, M., Lotter, S., Heerenklage, J., Breuer-Jammali, M., Stegmann, R., & Mahro, B. Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl Microbiol Biotechnol, 43(6), 1128-1135. (1995).
Kastner, M., & Mahro, B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol, 44(5), 668-675. (1996a).
Kastner, M., & Mahro, B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology, 44(5), 668-675. (1996b).
Kelsey, J. W., Kottler, B. D., & Alexander, M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environmental Science & Technology, 31(1), 214-217. (1997).
Kowalchuk, G.A., Gerrards,S. & Woldendrop, J.W. Detection and characterization of fungal infections of Ammophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Applied and Environmental Microbiology 63: 3858-3865 (1997).
Laine, M. M., & Jorgensen, K. S. (1996). Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Applied and Environmental Microbiology, 62(5), 1507-1513.
Leahy, J. G. and Colwell, R. R., Microbial-Degradation of Hydrocarbons in the Environment. Microbiological Reviews 54(3): 305-315(1990).
Lee, Sang-Hwan, Lee, Seokho, Kim, Dae-Yeon and Kim, Jeong-gyu, Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials 143(1-2): 65-72(2007).
Lee, Sunggyu and Cutright, Teresa, Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Journal of Cleaner Production 3(4): 255(1995).
Lin, Ta-Chen, Pan, Po-Tsen, Cheng, Sheng-Shung.Ex situ bioremediation of oil-contaminated soil. Journal of Hazardous Materials176: 27-34(2010).
Liu, Pao-Wen Grace, Whang, Liang-Ming, Yang, Ming-Chieh, Cheng. Sheng-Shung. Biodegradation of diesel-contaminated soil : A soil column study. Journal of the Chinese Institute of Chemical Engineers 39: 419-428 (2008).
Liu, Pao-Wen Grace, Whang, Liang-Ming, Chang, Tsung-Chain, Tseng, I-Cheng, Pan, Po-Tseng, Cheng. Sheng-Shung. Verification of necessity for bioaugmentation-lesson from two batch case studies for bioremediation of diesel-contaminated soil. J. Chem Technol Biotechnol 84: 808-819 (2009).
M. Alexander . Biodegradation and Bioremediation, Academic Press, San Diego, CA, USA, 1999.
Mancera-Lopez M.E., Esparza-Garcia F. , Chavez-Gomez B., Rodriguez-Vazquez R. , Saucedo-Castaneda G. and Barrera-Cortes J. , Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Biodeterioration & Biodegradation 61: 151-160(2008).
Marin, J. A., Hernandez, T. and Garcia, C., Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environmental Research 98(2): 185-195(2005).
Menzie, C. A., Potocki, B. B. and Santodonato, J., Exposure to Carcinogenic Pahs in the Environment. Environmental Science & Technology 26(7): 1278-1284(1992).
Namkoong, W., Hwang, E. Y., Park, J. S. and Choi, J. Y., Bioremediation of diesel-contaminated soil with composting. Environmental Pollution 119(1): 23-31(2002).
Ortega-Calvo, J. J., Lahlou, M. and Saiz-Jimenez, C., Effect of organic matter and clays on the biodegradation of phenanthrene in soils. International Biodeterioration & Biodegradation 40(2-4): 101-106(1997).
Oudot J, Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13: 277-302(1984).
Pacheco, Adriana de O., Kagohara, Edna, Andrade, Leandro H., Comasseto, João V., Crusius, Iracema H.-S., Paula, Claudete R. and Porto, André L.M., Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (Candida guilliermondii). Enzyme and Microbial Technology 42(1): 65-69(2007).
Perfumo, A., Banat, I. M., Marchant, R. and Vezzulli, L., Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66(1): 179-184(2007).
Plaza C, Xing B, Ferna´ndez JM, Senesi N, Polo ABinding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environ Pollut 157:257–263 (2009)
Postma, J., S. Walter, and J. A. van Veen. Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar trifolii. Soil Biol. Biochem. 21:437–442.(1989)
Potin O., Veignie E., Rafin C., Biodegradation of plycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiology Ecology 51: 71-78 (2004)
Providenti, M. A., Lee, H. and Trevors, J. T., Selected Factors Limiting the Microbial-Degradation of Recalcitrant Compounds. Journal of Industrial Microbiology 12(6): 379-395(1993).
Quadri G, Chen X, Jawitz JW, Tambone F, Genevini P, Faoro F, Adani F Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE). Environ Sci Technol 42:2618–2623 (2008)
Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R. and Banat, I. M., Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology 90(2): 159-168(2003).
Reid, B. J., Jones, K. C. and Semple, K. T., Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environmental Pollution 108(1): 103-112(2000).
Ritmann, B.E., Mc Carty, P.L., Enviromental Biotechnology : Pronciples and Application. Mc Graw-Hill, New York USA, 2001.
Roling, W. F. M., Milner, M. G., Jones, D. M., Fratepietro, F., Swannell, R. P. J., Daniel, F. and Head, I. M., Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Applied and Environmental Microbiology 70(5): 2603-2613(2004).
Ruggeri C., Andrea F., Giuseppina B., Paolo C., Paolo L.C., Manuela P., Simona S., Elena T., Isolation and characterization of surface active compound-producing bacteria from hydrocarbon-contaminated environement. Int. Biodeterioration and biodegradation 63(7): 936-942 (2009).
Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., & Swings, J. (2003). Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94(1), 127-137
Sayara, T., Sarra, M., & Sanchez, A. Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation, 21(3), 345-356. (2010).
Sayler GS, Ripp S. Field application of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289.(2000).
Scelza, R., Rao, M. A., & Gianfreda, L. Effects of compost and of bacterial cells on the decontamination and the chemical and biological properties of an agricultural soil artificially contaminated with phenanthrene. Soil Biology & Biochemistry, 39(6), 1303-1317. (2007).
Scelza, R., Rao, M. A., & Gianfreda, L. Properties of an aged phenanthrene-contaminated soil and its response to bioremediation processes. Journal of Soils and Sediments, 10(3), 545-555. (2010).
Semple, K. T., Cain, R. B. and Schmidt, S., Biodegradation of aromatic compounds by microalgae. Fems Microbiology Letters 170(2): 291-300(1999).
Semple, K. T., Reid, B.J.,Fermor, T.R.,Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution 112: 269-283 (2001).
Sublette, Kerry L., Fundamentals of Bioremediation of Hydrocarbon Contaminated Soils, the University of Tulsa, continuing engineering and science education, March 5-6, 2001.
Taylor, L.T. and Jones, D.M., Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44(5): 1131-1136(2001).
Townsend, G. T., Prince, R. C., & Suflita, J. M. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environmental Science & Technology, 37(22), 5213-5218. (2003).
US Environmental Protection Agency. “Natural Attenuation of MTBE in the Subsurface under Methanogenic Conditions”, EPA/600/R-00/006, Office of Research and Development, January.(2000b).
US Environmental Protection Agency. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128, Office of Research and Development, September. (1998).
US Environmental Protection Agency.Ultrasonic extraction. Test method for evaluating solid waste physical/chemical methods. Method 3550 B 2nd revision, December (1996).
US Environmental Protection Agency. Non halogenated organics using GC/FID. Test method for evaluating soild waste, method 8015B (1995).
Van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. and Witholt, B., Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole 58(4): 427-440(2003).
Van Elsas, J. D., A. F. Dijkstra, J. M. Govaert, and J. A. van Veen. Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol. Ecol. 38:151–160.(1986)
Van Veen, J. A., J. N. Ladd, and M. Amato. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)] glucose and [15N](NH4)2SO4 under different moisture regimes. Soil Biol. Biochem. 17:747–756.(1985)
Van Veen, J. Van Orbeek L.S., Dirk J., Van Elsas, J. Fate and activity of microorganism introduced into soil. Microbiology and Molecular Biology Review Vol. 61 No. 2 : 121-135.(1997)
Vandyke, M. I., Couture, P., Brauer, M., Lee, H. and Trevors, J. T., Pseudomonas-Aeruginosa Ug2 Rhamnolipid Biosurfactants - Structural Characterization and Their Use in Removing Hydrophobic Compounds from Soil. Canadian Journal of Microbiology 39(11): 1071-1078(1993).
Venosa, Albert D. and Zhu, Xueqing, Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands. Spill Science and Technology Bulletin 8(2): 163-178(2003).
Wongsa P., Tanaka M., Ueno A., Hasanuzzaman M., Yumoto I., Okuyama H., Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marceccens possessing high efficiency to gasoline, kerosene, diesel oil and lubricating oil. Curr microbial 49(6):415-22 (2004).
Zhang, Y. M. and Miller, R. M., Enhanced Octadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant (Biosurfactant). Applied and Environmental Microbiology 58(10): 3276-3282(1992).
Zhu, Xueqing., Venosa, A.D., Suidan M.T., Lee K., Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands. U.S. Environmental Protection Agency. (2001)
Zinjarde, S. S. and Pant, A. A., Hydrocarbon degraders from tropical marine environments. Marine Pollution Bulletin 44(2): 118-121(2002).
馬志強,應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率,國立成功大學環境工程學系(所)碩士論文 (2005)
廖翊廷,應用生物刺激及菌種添加之離場土耕法整治總石油碳氫化合物污染土壤之模場研究,國立成功大學環境工程學系(所)碩士論文 (2007)
潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,國立成功大學環境工程學系(所)碩士論文 (2006)
蔡在唐、胡太龢、陳忠勳、葉宗裕、高志明,評估以加強式生物處理整治受燃料油污染土壤之成效,土壤與地下水研討會 (2006)
鄭幸雄、潘柏岑、廖翊廷、劉保文、黃良銘,應用生物界面活性劑促進柴油污染土壤生物復育之可行性評估及現場驗證,土壤與地下水研討會 (2006)
鄭幸雄,黃良銘,潘柏岑,廖翊廷,高俊璿,受不同比例之柴油與燃料油污染土壤之生物降解探討,環工年會-土壤與地下水研討會 (2007)
高俊璿,高濃度石化油汙染土壤之不同微生物降解三類石油碳氫化合物研究,國立成功大學環境工程學系(所)碩士論文 (2008)
謝宗霖,以兩階段生物整治策略處理受石油碳氫化合物汙染土壤復育之研究,
國立成功大學環境工程學系(所)碩士論文 (2009)
楊宇祥 , 複合式生物復育技術應用於油汙土壤之離場整治, 國立成功大學環境工程學系(所)碩士論文 (2010)