簡易檢索 / 詳目顯示

研究生: 陳志宏
Chen, Chih-hung
論文名稱: 高週疲勞試體參數設計與分析
THE SPECIMEN DESIGN AND ANALYSIS FOR HIGH CYCLE FATIGUE TEST
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 135
中文關鍵詞: 試體設計高週疲勞
外文關鍵詞: ultrasonic fatigue test, specimen design, high cycle fatigue
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究高週波疲勞試體的設計。針對彈性材料試體設計方法,討論試體漸變段方程式分別為Neppiras formula、圓弧方程式、二次方程式以及五次方程式的試體應變分布、共振長度和放大率,以決定最好的漸變段方程式為五次方程式。並研究隨著材料性質的改變,試體共振長度以及放大率的變化情形。
    根據黏彈性波動理論,另行發展一套針對黏彈性材料的試體設計方法,並將數值分析結果和彈性材料的設計方法做比較,並研究材料性質對設計方法的影響。
    針對疲勞試驗中試體所產生的溫度,本文建議使用熱傳導結合熱對流的模型去模擬,並和實驗做比較。同時研究各種強制對流的冷卻效果。

    In this study, the transitional functions are investigated as Neppiras formula, equation of circular arc, second-order equation and fifth-order equation. According to strain distribution, resonance length and magnification factor, the best transitional function is determined as the fifth-order equation. With the materials properties change, the resonance length and magnification factors of the specimen are investigated.
    Based on the theory of visco-elasticity, the specimen design for visco-elastic materials is developed. Numerical results for visco-elastic materials compared with those for elastic materials. The influenced of material behavior on specimen design is studied.
    The conduction-combined-convection model of heat-transfer is also modeled to evaluate temperature distribution along the specimen during fatigue test. Numerical results based on this model are compared with the experiment data and the effect of forced convection is investigated.

    CHAPTER 1..................................................................1 1.1 GENERAL...........................................................1 1.2 OBJECT AND SCOPE..................................................2 CHAPTER 2..................................................................4 2.1 HISTORICAL PERSPECTIVE............................................4 2.1.1. ULTRASONIC FATIGUE TEST...........................................4 2.1.2. SPECIMEN DESIGN FOR FATIGUE TEST..................................5 2.1.3. TEMPERATUE RISING DURING FATIGUE TEST.............................7 2.2 THE ADVANTAGE OF ULTROSONIC FATIGUE TEST..........................9 2.3 TEST PRINCIPLES..................................................11 CHAPTER 3.................................................................15 3.1 MODELING THE VIBRATION OF SPECIMEN FOR ELASTIC MATERIALS.........15 3.2 THE TYPE OF CROSS-SECTION........................................18 3.2.1 CIRCULAR CROSS-SECTION...........................................19 3.2.2 RECTANGULAR CROSS-SECTION........................................19 3.2.3 PLATE-LIKE SPECIMEN..............................................20 3.3 THE TRANSITIONAL FUNCTIONS OF CROSS-SECTION......................20 3.3.1 NEPPIRAS FORMULA.................................................20 3.3.2 THE EQUATION OF CIRCULAR ARC.....................................21 3.3.3 SECOND-ORDER EQUATION............................................22 3.3.4 FIFTH-ORDER EQUATION.............................................23 3.4 RESULTS OF SPECIMEN DESIGN FOR PLATE-LIKE SPECIMENS WITH ELASTIC MATERIALS........................................................24 3.4.1 DISPLACEMENT AND STRAIN DISTRIBUTIONS ALONG THE PLATE-LIKE SPECIMENS .................................................................24 3.4.2 THE BEST TRANSITIONAL FUNCTION...................................26 3.4.3 INFLUENCE OF MATERIAL PROPERTIES.................................27 CHAPTER 4.................................................................30 4.1 MODELING THE VIBRATION OF SPECIMEN FOE VISCO-ELASTIC MATERIALS...30 4.1.1. THE LINEAR DYNAMIC RESPONSE FUNCTIONS OF VISCO-EALSTIC MATERIALS .................................................................31 4.1.2. WAVE PROPAGATION AND ATTENUATION IN A BAR OF UNIFORM CROSS-SECTION .................................................................35 4.1.3. SPECIMEN DESIGN FOR VISCO-ELASTIC MATERIALS......................37 4.2 THE TYPE OF CROSS-SECTION........................................38 4.3 THE TRANSITIONAL FUNCTIONS OF CROSS-SECTION......................39 4.3.1. NEPPIRAS FORMULA.................................................39 4.3.2. THE EQUATION OF CIRCULAR ARC.....................................40 4.3.3. SECOND-ORDER EQUATION............................................41 4.3.4. FIFTH-ORDER EQUATION.............................................41 4.4 RESULT OF SPECIMEN DESIGN FOR VISCO-ELASTIC MATERIALS............42 4.4.1. DISPLACEMENT AND STRAIN DISTRIBUTIONS ALONG THE PLATE-LIKE SPECIMENS .................................................................42 4.4.2. THE BEST TRANSITIONAL FUNCTION...................................43 4.4.3. INFLUENCE OF MATERIAL PROPERTIES.................................44 4.4.4. THE CONDITION TO USE SPECIMEN DESIGN FOR VISCO-ELASTIC MATERIALS .................................................................45 CHAPTER 5.................................................................46 5.1 GENERAL..........................................................46 5.2 THE MODEL OF HAET TRANSFER TO SPECIMEN...........................52 5.3 RESULTS OF TEMPERATURE EVALUATION................................54 CHAPTER 6.................................................................57 6.1 CONCLUSTIONS.....................................................57 6.2 RECOMMENDATIONS FOR FURTHER RESEAECH.............................58 REFERENCES................................................................60 TABLES....................................................................62 FIGURES...................................................................66 APPENDIX.................................................................102 APPENDIX A: PROGRAM OF SPECIMEN DESIGN FOR ELASTIC MATERIALS (MATLAB)...103 A-1 Transitional function as Neppiras formula.......................103 A-2 Transitional function as an equation of circular arc............104 A-3 Transitional function as second-order equation..................106 A-4 Transitional function as fifth-order equation...................109 APPENDIX B: PROGRAM OF SPECIMEN DESIGN FOR VISCO-ELASTIC MATERIALS (MATLAB) ................................................................112 B-1 The maximum strain of a bar with uniform cross-section..........112 B-2 Transitional function as Neppiras formula.......................113 B-3 Transitional function as an equation of circular arc............116 B-4 Transitional function as second-order equation..................120 B-5 Transitional function as fifth-order equation...................124 APPENDIX C: PROGRAM FOR THE TEMPERQATURE EVALUATION (MATLAB)............130

    REFERENCES

    Bajons, P., “Ultrasonic test samples of different materials with equivalent vibration characteristics”, Applied Acoustics, 1979, Vol. 12(3), pp. 181-185.
    Bajons, P., Fritsch, W., “Strain distributions in vibrating rods of variable cross-sections—Part 1: Experiment and finite element calculations”, Applied Acoustics, 1994, Vol. 43(2), pp. 113-126.
    Bajons, P., Fritsch, W., Rösel, M., “Strain distributions in vibrating rods of variable cross-sections—Part 2: High power ultrasonic applications”, Applied Acoustics, 1994, Vol. 43(2), pp. 127-140.
    Bajons, P., Kromp, W., “Determination of magnification and resonance length of samples used in ultrasonic fatigue tests”, Ultrasonics, 1978, Vol. 16(5), pp. 213-217.
    Bajons, P., Weiss, B., “Internal friction studies of copper after high frequency fatigue (ultrasonic fatigue at 20 kHz)”, Scripta Metallurgica, 1971, Vol. 5(6), pp. 511-514.
    Girard, F., Vidal, G., Rev. Metall., 1959, Vol. 56, pp. 25.
    Holper, B., Mayer, H., Vasudevan, A. K., Stanzl, S. E., Tschegg, S. E., “Near threshold fatigue crack growth in aluminium alloys at low and ultrasonic frequency: Influences of specimen thickness, strain rate, slip behaviour and air humidity”, International Journal of Fatigue, 2003, Vol. 25(5), pp. 397-411.
    Hopkinson, B., Proc. R. Soc., 1911, Vol. A86, pp. 101.
    Jenkin, C. F., Proc. R. Soc., 1925, Vol. A109, pp. 119.
    Jenkin, C. F., Lehmann, G. D., Proc. R. Soc., 1929, Vol. A125, pp. 83.
    Jiang, L., Brooks, C. R., Liaw, P. K., Wang, H., Rawn, C. J., Klarstrom, D. L., ”High-frequency metal fatigue: the high-cycle fatigue behavior of ULTIMET alloy”, Materials Science and Engineering, 2001, Vol. A314, pp. 162-175.
    Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., Klarstrom, D. L., “Temperature evolution during low-cycle fatigue of ULTIMET alloy: experiment and modeling”, Mechanics of Materials, 2004, Vol. 36, pp. 73-84.
    Kikukawa, M., Ohji, K., Ogura, K., J. Basic. Eng. (Trans. ASME D), 1965, Vol. 87, pp. 25.
    Kromp, W., Weiss, B., “Electrical resistivity of copper after high frequency fatigue (ultrasonic fatigue at 20 kHz)”, Scripta Metallurgica, 1971, Vol. 5(6), pp. 499-504.
    Liaw, P. K., Wang, H., Jiang, L., Yang, B., Huang, J. Y., Kuo, R. C., Huang, J. G., “Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz”, Scripta meter, 2000, Vol. 42, pp. 389-395.
    Matikas, T. E., “Specimen design for fatigue testing at very high frequencies”, Journal of Sound and Vibration, 2001, Vol. 247, No. 4, pp. 673-681.
    Mason, W. P., Piezoelectric Crystals and Their Application in Ultrasonics, 1950, pp. 161. New York:Van Nostrand.
    Morrissey, R., Nicholas, T., “Fatigue strength of Ti–6Al–4V at very long lives”, International Journal of Fatigue, 2005, Vol. 27(10-12), pp. 1608-1612.
    Neppiras, E. A., Proc. ASTM, 1959, Vol. 59, pp. 15.
    Stanzl, S., Tschegg, E., “Influence of environment on fatigue crack growth in the threshold region”, Acta Metallurgica, 1981, Vol. 29(1), pp. 21-32.
    Yang, B., Liaw, P. K., Wang, H., Jiang, L., Huang, J. Y., Kuo, R. C., Huang, J. G., “Thermographic investigation of the fatigue behavior of reactor pressure vessel steels”, Materials Science and Engineering, 2001, Vol. A314, pp. 131-139.
    Yang, B., Liaw, P. K., Morrison, M., Liu, C. T., Buchanan, R. A., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D. E., “Temperature evolution during fatigue damage”, Intermetallics, 2005, Vol. 13, pp. 419-428.

    下載圖示 校內:立即公開
    校外:2006-08-10公開
    QR CODE