| 研究生: |
黃詩文 Huang, Shih-Wen |
|---|---|
| 論文名稱: |
利用原子層沉積系統製備矽晶太陽能電池鈍化層材料之特性探討 Study of the Characteristics of Passivation Layer Materials in Silicon Solar Cells by Atomic Layer Deposition System |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 鈍化層 、氧化鋁 、二氧化鈦 、原子層沉積系統 、退火 、載子壽命 、矽晶太陽能電池 |
| 外文關鍵詞: | passivation layer, aluminum oxide, titanium dioxide, atomic layer deposition, annealing, carrier lifetime, silicon solar cell |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能電池可分成三代電池,分別是矽晶、薄膜與新觀念太陽能電池,因為矽本身產量豐富,而且矽晶電池製程技術與半導體製程相近,現今太陽能電池市場主要以矽晶電池為主,約佔市場九成。目前市場矽晶高效產品以P型背面鈍化型結構電池(Passivated Emitter and Rear Cell, PERC)為主,透過背面鈍化、高效率射極等結構後,效率已可超過22.5 %以上。在高效矽晶電池研究中,減少載子復合是非常重要的技術,自2006年來,以氧化鋁(Al2O3)為主的鈍化層已普遍應用在p型與n型矽晶太陽能電池中,PERC電池所使用鈍化材料與技術上,目前常用材料為氧化鋁,因為氧化鋁層擁有較強的負電荷,可以在P型矽基材提供較佳的電荷斥回效應,利用場效應降低介面電子電洞複合,進而降低電池內載子壽命的損失,此外,此層氧化物材料也須能提供較佳之化學鈍化特性,藉由矽材與鈍化層介面的保護,來減少對於介面缺陷的產生。二氧化鈦這材料尚未應用在量產電池中,但本身因為能帶結構與折射率可作為載子選擇層與抗反射膜而受到關注。
原子層沉積系統(Atomic layer Deposition, ALD)技術可以沉積覆蓋性佳且均勻的薄膜,有別於一般傳統化學氣相沉積的成長方式,前驅物依序地被引進反應腔體裡面,藉由前驅物在基材表面的飽和化學吸附及自我限制的化學反應,將原子一層一層地堆疊起來,使得每一次進氣循環的過程,僅形成厚度為一層原子的薄膜,此項特性讓控制鍍膜厚度的精確性可達原子級(約0.1nm)的精度而且階梯覆蓋性佳,以現有鍍膜技術評估,原子層沉積系統所鍍製的薄膜層較為緻密,且具有較低之缺陷電荷,因此利用ALD進行鈍化膜層的製備,較適用來進行不同鈍化層材料的探討。
沉積後的退火過程,溫度、時間深深影響鈍化層的表現,例如溫度影響會改變鈍化層晶相、矽與氧化層之間介面鍵結等等,本研究利用原子層沉積系統分別沉積不同厚度之氧化鋁與二氧化鈦在矽基板雙面,嘗試改變退火溫度得到優化的鈍化層,使用少數載子壽命測試儀測量樣品的少數載子壽命(Lifetime, Ⴀ)、飽和電流(saturation current density, J0)與隱開路電壓(implied open-circuit voltage, iVoc),利用準穩態光電導模式(Quasi-Steady-State photoconductance, QSSPC)分析鈍化效果,由穿透式電子顯微鏡觀察膜層厚度、介面特徵,配合X光能譜分析儀探討退火對於氧化鋁與二氧化態之鈍化影響,評估其鈍化表現對於矽晶電池的應用方向。
Al2O3 has been widely used in silicon solar cells as the passivation material. Thinner wafers can improve efficiency while reducing costs. However, thinner wafers require lower process temperatures resulting in surface defects account for a higher proportion of overall defects. Therefore, the deposition technology of the passivation layer becomes more important.
The Atomic Layer Deposition (ALD) is an unique technology for depositing a thin film with good coverage and uniformity. The deposited film is dense and has a very low defect charge. In this research, using ALD to develop Al2O3 and SiO2 composite film passivation layer and the emerging material TiO2 film explores its passivation characteristics by manipulating the annealing temperature. It is found that the passivation effect of the Al2O3 composite film is significant with the annealing temperature of 400°C, and decreases at 600°C. The additional SiO2 in the interface helps to induce more negative charges. In addition, with the development of new materials, the TiO2 film layer has the best passivation performance without heat accumulation causing by annealing.
[1] Albert Polman, Mark Knight, Erik C. Garnett, Bruno Ehrler, Wim C. Sinke, "Photovoltaic materials: Present efficiencies and future challenges," vol. 352, no. 6283, 2016.
[2] "Best research-cell efficiencies," NREL, 2020. [Online]. Available: https://www.wikiwand.com/en/Amorphous_silicon.
[3] Sven Ru¨hle, "Tabulated values of the Shockley–Queisser limit for single junction solar cells," Solar energy, vol. 130, pp. 139-147, 2016.
[4] Gonçalo Monteiro Albuquerque, "Theoretical limit for efficiency of silicon solar cells"The Shockley-Queisser Limit and Beyond"," 2019.
[5] Andrea Antonini, "Photovoltaic Concentrators - Fundamentals, Applications, Market & Prospective," 22020.
[6] Jonathan R. Bakke, Katie L. Pickrahn, Thomas P. Brennan and Stacey F. Bent, "Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition," Nanoscale, vol. 3, pp. 3482-3508, 2011.
[7] Jingjing Liu, Yao Yao, Shaoqing Xiao and Xiaofeng Gu, “Review of status developments of high-efficiency crystalline silicon solar cells,” Journal of Physics D: Applied Physics, p. 123001, 20 2 2018.
[8] 許弘儒、吳世雄、童永樑、蔡松雨, “鈣鈦礦太陽電池於堆疊型太陽電池之應用,” 工業材料雜誌, 編號 381, 2018.
[9] E. Cho, "Fabrication and modeling og high efficiency and stabilized p-type passivated emitter rear silicon solar cells(PERC)," USA, 2017.
[10] G. Dingemans and W. M. M. Kessels, "Status and prospects of Al2O3-based surface passivation schemes for solar cells," Journal of Vacuum Science and Technology A, vol. 30, 2012.
[11] "Wikiwand," [Online]. Available: https://www.wikiwand.com/en/Amorphous_silicon. [Accessed 2021].
[12] Oliver Schultz, , Ansgar Mette, Martin Hermle and Stefan W. Glunz, "Thermal Oxidation for Crystalline Silicon Solar Cells Exceeding 19% Efficiency Appling Industrially Feasible Process Technology," PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, vol. 16, pp. 317-324, 2008.
[13] G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, "Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film," Phys.Status Solidi (RRL) , vol. 5, no. 22, 2011.
[14] "Influence of the high-temperature “firing” step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coatings on silicon solar cells," Journal of Vacuum Science & Technology B, vol. 21, p. 2123, 2003.
[15] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 51)," Prog Photovolt Res Appl, vol. 20, 2017.
[16] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, "On the surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics, vol. 104, p. 113703, 2008.
[17] Armin Richter, Jan Benick, Martin Hermle, and Stefan W. Glunz, "Excellent silicon surface passivation with 5 Å thin ALD Al2O3 layers: Influence of different thermal post-deposition treatments," Phys. Status Solidi RRL, vol. 5, no. 5-6, 2011.
[18] Robert Bock, Jan Schmidt, Susanne Mau, Bram Hoex, and Rolf Brendel, "The ALU+ Concept: N-Type Silicon Solar Cells With Surface-Passivated Screen-Printed Aluminum-Alloyed Rear Emitter," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 57, no. 8, 2010.
[19] Xinbo Yang and Klaus Weber, Proc. IEEE 42nd Photovoltaic Spec. Conf, pp. 1-4, 2015.
[20] Karim Mohamed Gad, Daniel Vossing, Armin Richter, Bruce Rayner, Leonhard M. Reindl, ¨, "Ultrathin Titanium Dioxide Nanolayers by Atomic Layer Deposition for Surface Passivation of Crystalline Sillicon," IEEE JOURNAL OF PHOTOVOLTAICS, vol. 6, no. 3, 2016.
[21] Liu, Yi, Chen, Yusi, LaFehr, David, Su, Yen, Huo, Yijie, et al, "Titanium oxide electron-selective layers for contact passivaiotn of thin-film crystalline silicon solar cells," Proceedings, vol. 9749, 2016.
[22] Ing-Song Yu, Yu-Wun Wang, Hsyi-En Cheng, Zu-Po Yang and Chun-Tin Lin, "Surface Passivation and Antireflection Behavior of ALD TiO2 on n-Type Silicon for Solar Cells," International Journal of Photoenergy, vol. 2013, 2013.
[23] Tsung-Cheng Chen, Tsuo-Chuan Yang, Hsyi-En Cheng, Ing-Song Yu and Zu-Po Yang, "Single material TiO2 thin film by atomic layer deposition for antireflection and surface passivation applications on p-type c-Si," Applied Surface Science, vol. 451, pp. 121-127, 2018.
[24] Valeriya Titova, Boris Veith-Wolf, Dimitrij Startsev and Jan Schmidt, "Effective passivation of crystalline silicon surfaces by ultrathin atomic-layer-deposited TiOx layers," in 7th International Conference on Silicon Photovoltaics, SiliconPV 2017.
[25] lng-Song Yu, I-Hsuan Chang, Hsyi-En- Cheng and Yung-Sheng Lin, "Surface Passivation of c-Si by Atomic Layer Deposition Ti02 Thin Films Deposited at Low Temperature," in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).
[26] Md. Anower Hossain, Kean Thong Khoo, Xin Cui, Geedhika K Poduval, Tian Zhang, Xiang Li, Wei Min Li, Bram Hoex, "Atomic layer deposition enabling higher efficiency solar cells: A review," Nano Materials Science, vol. 2, pp. 204-226, 2020.
[27] Riikka L. Puurunen, "Growth per cycle in atomic layer deposition: A theoretical model," Chemical Vapor Deposition, vol. 9, 2003.
[28] Riikka L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," Journal of Applied Physics, vol. 97, p. 121301, 2005.
[29] "Contactless carrier-lifetime measurement in silicon wafers, ingots, and blocks," global Photovoltaic Committee, 2010. [Online]. Available: www.semi.org.
[30] Andres Cuevas, Daniel Macdonald, "Measuring and interpreting the lifetime of silicon wafers," Solar Energy, vol. 76, pp. 255-262, 2004.
[31] W. Barker, "New program for uncertainty in PCD measurements using Monte Carlo method compatible with Sinton WCT-120 lifetime tester," in 2015 Asia-Pacific Solar Research Conference, 2015.
[32] G. Dingemans,z M. C. M. van de Sanden, and W. M. M. Kessels, "Influence of the Deposition Temperature on the c-Si Surface Passivation by Al2O3 Films Synthesized by ALD and PECVD," Electrochemical and Solid-State Letters, vol. 13, no. 3, pp. H76-H79, 2010.
[33] G. Dingemans, F. Einsele, W. Beyer, M. C. M. van de Sanden,and W. M. M. Kessels, "Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface," Journal of Applied Physics, vol. 111, p. 093713, 2012.
[34] Armin Richter, Jan Benick, Martin Hermle, and Stefan W. Glunz, "Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al2O3," Applied Physics Letters, vol. 101, p. 061606, 2014.
[35] V. Afanas'ev, "Electron Band Alignment at Interfaces of Semiconductors with Insulating Oxides: An Internal Photoemission Study," Advances in Condensed Matter Physics , vol. 3, pp. 301302-1-301302-30, 2014.
[36] Janam Jhaver, Sushobhan Avasthi, Gabriel Man, William E. McClain, Ken Nagamatsu, Antoine Kahn, Jeffrey Schwartz, and James C. Sturm, "Hole-Blocking Crystalline-Silicon/Titanium-Oxide Heterojunction with Very Low Interface Recombination Velocity," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 2013.
[37] Girija Sahasrabudhe, Sara M. Rupich, Janam Jhaveri, Alexander H. Berg,‡,§ Ken A. Nagamatsu,Gabriel Man,‡,§ Yves J. Chabal,∥ Antoine Kahn, Sigurd Wagner, James C. Sturm, and Jeffrey Schwartz, "Low-Temperature Synthesis of a TiO2/Si Heterojunction," Journal of the American Chemical Society, vol. 137, pp. 14842-14845, 2015.
[38] Rungthiwa Methaapanon and Stacey F. Bent, "Comparative Study of Titanium Dioxide Atomic Layer Deposition on Silicon Dioxide and Hydrogen-Terminated Silicon," The Journal of Physical Chemistry C, vol. 114, no. 23, pp. 10498-10504, 2010.
[39] Baochen Liao , Neeraj Dwivedi, Qiang Wang, Reuben J. Yeo, Armin G. Aberle , Charanjit S. Bhatia, "A Comprehensive Fundamental Understanding of Atomic Layer Deposited Titanium Oxide Films for c-Si Solar Cell Applications," IEEE JOURNAL OF PHOTOVOLTAICS, vol. 11, no. 2, pp. 319-328, 2021.
[40] Baochen Liao, Bram Hoex, Kishan D. Shetty, Prabir Kanti Basu, "Passivation of Boron-Doped Industrial Silicon Emitters by Thermal Atomic Layer Deposited Titanium Oxide," IEEE JOURNAL OF PHOTOVOLTAICS, vol. 5, no. 4, 2015.
[41] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, and M. C. M. van de, "Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3," APPLIED PHYSICS LETTERS, vol. 91, p. 112107, 2007.
[42] W. Barker, "New program for uncertainty in PCD measurements using Monte Carlo method compatible with Sinton WCT-120 lifetime tester," in 2015 Asia-Pacific Solar Research Conference, 2015.
校內:2026-09-30公開