簡易檢索 / 詳目顯示

研究生: 蘇柏鳴
Su, Po-Ming
論文名稱: 應用事件導向負面情緒預測網路使用者憂鬱傾向
Predicting Web User's Tendency of Depression Using Event-Driven Negative Emotion Model
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 憂鬱症憂鬱傾向情緒事件症狀負面想法
外文關鍵詞: Depression, Depression Tendency, Emotion, Event, Symptom, Negative Thought
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在是網路發達的時代,很多人會在網路上發表自己心情狀態的言論,本論文的重點在透過找出網路文章中的負面事件來預測網路文章的憂鬱傾向。本研究提出事件導向負面情緒模型(Event-Driven Negative Emotion Model)方法用以判斷網路使用者是否具有憂鬱情緒。我們從台大知名BBS站(PTT)的憂鬱症板(Prozac)收集該板使用者的文章,用以觀察、訓練與實驗,並且利用中央研究院CKIP斷詞系統做文章斷詞處理。同時我們使用王壽年在2011年提出的四個詞典,經由專家篩選後整合成新的詞典,為負面事件、負面情緒、症狀和負面想法辭典。四個詞典被運用在事件導向負面情緒模型的計算中,每一篇文章皆會得到一個情緒分數(Emotion Score),這些情緒分數代表網路使用者在寫這篇文章時的憂鬱傾向指數。我們將文章經心理學家標記是否有憂鬱傾向,當成判斷的依據,實驗結果顯示事件導向負面情緒模型(EDNE Model)的F-measure值為0.624比王壽年2011提的多重消極因素分析模型(MPFA Model)的F-measure值0.539還來的高,實驗結果證明本研究提出的方法可以利用找出該篇文章的主要負面事件詞,配合症狀與負面想法詞來判斷這篇章是否有憂鬱傾向。

    Many people write their mood state on the Internet now.The focus of this paper is predict the Web user’s depression tendency by identifying negative event in the article. In this work, Event-Driven Negative Emotion Model method used to determine the Web users whether they have depression. We collected some user's articles from well-known BBS stations (PTT), its used to observe, train and experiment. The articles were segmented using Chinese Word Segmentation System with Unknown Word Extraction and POS Tagging from ACADEMIA SINICA.
    In addition, we use the four Wang's 2011 dictionary, and through expert screening integrated into the new dictionary, negative events, negative emotions, symptoms and negative thoughts dictionary. The Four dictionaries were used to calculate emotion score by using Event-Driven Negative Emotion Model, these emotion scores on behalf of the depression index of Web users. The experimental results showed the F-measure value by using EDNE Model was better than using MPFA Model. So we get a conclusion that identify the major negative event term to determine whether depression is helpful.

    摘要 III Abstract V 誌謝 VII 章節目錄 VIII 圖目錄 X 表目錄 XI 第一章 序論 1 1.1 研究背景 1 1.2 研究動機與問題 2 1.3 研究目標 5 1.4 研究方法 5 1.5 論文貢獻 6 1.6 論文架構 7 第二章 文獻探討 8 2.1 憂鬱症(Depression) 8 2.1.1 症狀 8 2.1.2 增加憂鬱症的因素 10 2.1.3 診斷 10 2.2 事件抽取(Event Extraction) 12 2.3 相似目標之研究 15 第三章 研究方法 16 3.1 系統架構 16 3.2 相關詞典(Lexicon) 18 3.2.1 負面情緒詞典(Negative Emotion Lexicon) 19 3.2.2 負面事件詞典(Negative Event Lexicon) 19 3.2.3 症狀詞典(Symptom Lexicon) 22 3.2.4 負面想法詞典(Negative Thought Lexicon) 23 3.3 事件導向負面情緒模型(Event-Driven Negative Emotion Model)24 3.3.1 詞典比對特徵函數(Lexicon Terma Matching Feature Function) 28 3.3.2 詞性標示特徵函數(POS Tagging Feature Function) 30 3.3.3 事件-情緒配對特徵函數(Event-Emotion Pair Feature Function) 32 3.3.4 症狀特徵函數(Symptom Feature Function) 34 3.3.5 負面想法特徵函數(NT Feature Function) 35 第四章 實驗與分析 36 4.1 實驗資料和評估方法 36 4.1.1 資料集(Data Set) 36 4.1.2 評估方法 37 4.2 標記方法 38 4.3 實驗評估 39 4.3.1 事件-情緒配對特徵函數參數 39 4.3.2 特徵函數效能分析 40 4.3.3 負面事件詞典效能分析 50 4.3.4 評估事件導向負面情緒模型 53 4.3.5 實驗結果分析 68 第五章 結論與未來工作 70 5.1 結論 70 5.2 未來的研究方向 70 參考文獻 71 附錄A 74 附錄B 79 附錄C 82

    [1]American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-Text Revision(DSM-IV-TR), Amer Psychiatric Pub, 2000.
    [2]WebMD,"Causes of Depression", http://www.webmd.com/depression/guide/causes-depression.
    [3]World Health Organization, "The International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10),"
    http://apps.who.int/classifications/apps/icd/icd10online, 2007.
    [4]Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, Franciska de Jong,"An Overview of Event Extraction from Text" in 10th ISWC Workshops,2011.
    [5]Okamoto, M., Kikuchi, M.: Discovering Volatile Events in Your Neighborhood: Local-Area Topic Extraction from Blog Entries. In: 5th Asia Information Retrieval Symposium (AIRS 2009). Lecture Notes in Computer Science, vol. 5839, pp. 181-192. Springer-Verlag Berlin Heidelberg (2009)
    [6]Liu, M., Liu, Y., Xiang, L., Chen, X., Yang, Q.: Extracting Key Entities and Signicant Events from Online Daily News. In: 9th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2008). Lecture Notes in Computer Science, vol. 5326, pp.201-209. Springer-Verlag Berlin Heidelberg(2008)
    [7]Tanev, H., Piskorski, J., Atkinson, M.: Real-Time News Event Extraction for Global Crisis Monitoring. In: 13th International Conference on Natural Language and Information Systems: Applications of Natural Language to Information Systems (NLDB 2008). Lecture Notes in Computer Science, vol. 5039, pp. 207-218. Springer-Verlag Berlin Heidelberg (2008)
    [8]Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: 14th Conference on Computational Linguistics (COLING 1992). vol. 2, pp. 53-545 (1992)
    [9]Hearst, M.A.: WordNet: An Electronic Lexical Database and Some of it’s Applications, chap. Automated Discovery of WordNet Relations, pp.131-151. MIT Press(1998)
    [10]Borsje, J., Hogenboom, F., Frasincar, F.: Semi-Automatic Financial Events Discovery Based on Lexico-Semantic Patterns. International Journal of Web Engineering and Technology 6(2), 115-140 (2010)
    [11]Nishihara, Y., Sato, K., Sunayama, W. : Event Extraction and Visualization for Obtaining Personal Experiences from Blogs.In: Symposium on Human Interface 2009 on Human Interface and the Management of Information. Information and Interaction. Part II. Lecture Notes in Computer Science,vol. 5618, pp. 315-324. Springer-Verlag Berlin Heidelberg (2009)
    [12]Aone, C., Ramos-Santacruz, M.: REES: A Large-Scale Relation and Event Extraction System. In: 6th Applied Natural Language Processing Conference (ANLP 2000).pp.76-83. Association for Computational Linguistics (2000)
    [13]Yakushiji, A., Tateisi, Y., Miyao, Y.: Event Extraction from Biomedical Papers using a Full Parser. In: 6th Paci_c Symposium on Biocomputing (PSB 2001). pp.408-419 (2001)
    [14]Li, F., Sheng, H., Zhang, D.: Event Pattern Discovery from the Stock Market Bulletin. In: 5th International Conference on Discovery Science (DS 2002). Lecture Notes in Computer Science, vol. 2534, pp. 35-49.Springer-Verlag Berlin Heidelberg(2002)
    [15]Cohen, K.B., Verspoor, K., Johnson, H.L., Roeder, C., Ogren, P.V., Baumgartner, Jr., W.A., White, E., Tipney, H., Hunter, L.: High-Precision Biological Event Extraction with a Concept Recognizer. In: Workshop on BioNLP: Shared Task collocated with the NAACL-HLT 2009 Meeting. pp. 50-58. Association for Computational Linguistics (2009)
    [16]Chun, H.W., Hwang, Y.S., Rim, H.C.: Unsupervised Event Extraction From Biomedical Literature Using Co-occurrence Information and Basic Patterns. In: 1st International Joint Conference on Natural Language Processing (IJCNLP 2004). Lecture Notes in Computer Science, vol.3248, pp.777-786. Springer-Verlag Berlin Heidelberg (2004)
    [17]Lee, C.S., Chen, Y.J., Jian, Z.W.: Ontology-Based Fuzzy Event Extraction Agent for Chinese E-News Summarization. Expert Systems with Applications 25(3), 431-447 (2003)
    [18]Y.-P. Huang, T. Goh, C.L. Liew, "Hunting Suicide Notes in Web 2.0–Preliminary Findings," in 9th IEEE ISM Workshops, 2007.
    [19]T.-T. Goh, Y.-P. Huang, "Monitoring youth depression risk in Web 2.0,"The Journal of Information and Knowledge Management Systems, vol.39, no. 3, 2009.
    [20]姚迪谷,「設計及發展憂鬱情緒量化評估輔助系統」,國立南台科技大學
    資訊工程所碩士論文,2008。
    [21]江協成,「網路部落格自殺意念言論之線上自動擷取與偵測」,私立元智
    大學資訊管理所碩士論文,2011。
    [22]王壽年,「應用多重消極因素分析模型預測部落客的憂鬱傾向」,國立成
    功大學資訊工程所碩士論文,2011。
    [23]財團法人董氏基金會,「憂鬱情緒自我篩檢」,
    http://www.jtf.org.tw/psyche/melancholia/overblue.asp。
    [24]林思恩,「東亞七國快樂指數 香港倒數第二 台灣人最不快樂」,
    http://www.gospelherald.com.hk/news/soc_1311.htm,2009。

    下載圖示 校內:2015-08-14公開
    校外:2015-08-14公開
    QR CODE