簡易檢索 / 詳目顯示

研究生: 賴文謙
Lai, Wen-Chian
論文名稱: CMOS毫米波行進波收發開關與V-band CMOS對數功率偵測器
Research on CMOS Millimeter-Wave Traveling-Wave T/R Switch and V-band CMOS Logarithmic Power Detector
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: CMOS毫米波收發開關功率偵測器
外文關鍵詞: CMOS, Millimeter-Wave (MMW), T/R Switches, Power Detectors, V-band
相關次數: 點閱:98下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製CMOS毫米波行進波收發開關與V-band CMOS 對數功率偵測器,皆採用TSMC CMOS 90-nm GUTM製程進行設計。論文第一部分為毫米波收發開關晶片設計。使用並聯諧振電感技術40–110 GHz CMOS行進波高隔離度收發開關,電路主體架構採用串-並式開關架構,配合並聯諧振電感應用於串聯式電晶體開關達到高隔離度效果;同時,並聯式電晶體開關搭配行進波概念設計提升頻寬與隔離度表現。使用負偏壓技術之高線性度W-band CMOS行進波收發開關,電路主體為使用四分之波長阻抗轉換器之行進波單刀雙擲開關。除了搭配負基極偏壓技術外,此次設計將負偏壓應用於電晶體的閘極端上,改善收發開關之功率乘載能力。論文第二部分毫米波功率偵測器設計與應用。V-band CMOS對數功率偵測器電路主體架構採用連續偵測對數放大器架構,增益級則採用五級共源極射頻放大器,替換掉傳統限制放大器設計方式,而整體電路特性有寬動態範圍與低對數錯誤表現。具對數輸入功率偵測之V-band CMOS中功率放大器,功率偵測器架構採用連續偵測對數放大器,並利用中功率放大器為增益級,達到對數功率偵測的效果;而對數功率偵測器整合在中功率放大器,可使其應用於內建測試機制、自動功率控制等系統當中。電路皆使用Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,晶片量測則採fully on-wafer方式進行量測。

    This thesis presents the design of CMOS millimeter-wave (MMW) RF T/R switches and power detectors, implemented by standard TSMC 90-nm GUTM CMOS process. In a 40–110 GHz CMOS T/R switch, the series-shunt type with parallel inductors and body-floating techniques is adopted. For bandwidth and isolation enhancement, shunt switches are designed by using traveling-wave cells. In a 75–110 GHz CMOS T/R switch design, the traveling-wave SPDT switch type with using quarter-wavelength transformers is employed. For shunt transistors, the adopted body-floating and negative-body biasing techniques can improve the insertion loss and linearity performance. The linearity performance is significantly improved by negative-gate biasing technique. In the design of a V-band CMOS logarithmic power detector design, the modified successive detection logarithmic amplifier structure is proposed. Instead of using traditional differential limiting amplifiers, MMW amplifiers are applied for the gain cells (to the V-band). In the final part, a V-band CMOS medium power amplifier (MPA) with input linear-in-dB power detector is presented. The CMOS MPA is co-designed with logarithmic power detector by inserting shunt detectors in input and output ports of the amplifier. Note that, the shunt detectors do not affect the performance of the proposed amplifier. The proposed circuit design is very suitable for the systems of automatic-level control, automatic-gain control, and built-in self test applications.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 1 第二章 應用於毫米波之寬頻CMOS行進波收發開關設計 3 2.1 收發開關簡介 3 2.2 重要參數介紹 5 2.3 開關模型及操作原理 8 2.3.1 NMOS電晶體小訊號模型 8 2.3.2 NMOS電晶體大訊號模型 11 2.4 常見之收發開關架構 12 2.4.1 串聯式(series type)、串-並式(series-shunt type) 收發開關 13 2.4.2 並聯電感諧振式(shunt inductor resonance)收發開關 13 2.4.3 洩漏訊號消除(leakage cancellation)技巧之串-並式收發開關 15 2.4.4 行進波(traveling-wave)收發開關 15 2.4.5 濾波式(filter-integrated)收發開關 16 2.4.6 單並聯(single-shunt)、雙並聯 (double-shunt)式收發開關 16 2.4.7 非對稱型(asymmetrical)收發開關 17 2.5 改善開關電晶體特性之技術 18 2.5.1 基極浮接(body-floating)技術 18 2.5.2 基極偏壓(body-biasing)技術 19 2.5.3 疊接電晶體(stacked transistors)技術 20 2.6 行進波/分散式概念原理與收發開關設計分析 21 2.6.1 行進波單刀單擲開關 21 2.6.2 行進波單刀雙擲開關 25 2.7 使用並聯諧振電感技術之40–110 GHz CMOS行進波高隔離度收發開關 27 2.7.1 電路設計考量 27 2.7.2 設計流程總結 32 2.7.3 模擬與量測結果 33 2.7.4 40–110 GHz CMOS收發開關結果與討論 36 2.8 使用負偏壓技術之高線性度W-band CMOS行進波收發開關 39 2.8.1 電路設計考量 39 2.8.2 設計流程總結 46 2.8.3 模擬與量測結果 47 2.8.4 結果與討論 51 2.9 收發開關/單刀雙擲開關設計總探討 52 第三章 V-band CMOS對數功率偵測器與具對數輸入功率偵測之中功率放大器 53 3.1 功率偵測器於系統應用之簡介 53 3.2 功率偵測電路及操作原理 55 3.3 對數放大器原理及重要參數介紹 60 3.3.1 對數放大器參數定義 61 3.3.2 對數放大器實現方法與架構 63 3.4 V-band CMOS對數功率偵測器 67 3.4.1 毫米波非接觸式人體呼吸心跳訊號感測系統簡介 67 3.4.2 電路設計考量 70 3.4.3 設計流程總結 80 3.4.4 模擬與量測結果 82 3.4.5 結果與討論 87 3.4.6 晶片整合設計考量 89 3.4.7 功率偵測器模擬結果與討論 91 3.5 具對數輸入功率偵測V-band CMOS中功率放大器 92 3.5.1 文獻探討與電路設計簡介 93 3.5.2 電路設計考量 96 3.5.3 設計流程總結 98 3.5.4 模擬與量測結果 100 3.5.5 結果與討論 103 第四章 結論 105 參考文獻 107

    [1] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. M. Niknejad,“A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec 2010.
    [2] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture Recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
    [3] B. Zhang, Y.-Z. Xiong, L. Wang, and S. Hu, “A switch-based ASK modulator for 10 Gbps 135 GHz communication by 0.13-μm MOSFET,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 415–417, Aug. 2012.
    [4] K.-X. Ma, S.-X. Mou, and K.-S. Yeo, “A miniaturized millimeter-wave standing-wave filtering switch with high P1dB,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1505–1515, Apr. 2013.
    [5] N. Camara, K. Zekentes, L. P. Romanov, A. V. Kirillov, M. S. Boltovets, K. V. Vassilevski, and G. Haddad, “Microwave p-i-n diodes and switches based on 4H-SiC,” IEEE Electron Device Lett., vol. 27, no. 2, pp. 108–110, Feb. 2006.
    [6] C. Ulusoy, et al., “A low-loss and high isolation D-Band SPDT switch utilizing deep-saturated SiGe HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 400–402, Jun. 2014.
    [7] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 8, pp. 1798–1808, Aug. 2004.
    [8] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 31–39, Jan. 2006.
    [9] C. Tinella, J. Fournier, D. Belot, and V. Knopik, “A high-performance CMOS-SOI antenna switch for the 2.5–5-GHz band,” IEEE J. SolidState Circuits, vol. 38, no. 7, pp. 1279–1283, Jul. 2003.
    [10] P. Park, D. Shin, and C. P. Yue, “High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 4, pp. 948–956, Apr. 2009.
    [11] F.-J. Huang and K.O, “A 0.5 μm CMOS T/R switch for 900-MHz wireless application,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.
    [12] B.-W. Min and G. M. Rebeiz, “Ka-band low-loss and high-isolation switch design in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 6, pp. 1364–1371, Jun. 2008.
    [13] M. Uzunkol and G. M. Rebeiz, “A low-loss 50–70 GHz SPDT switch in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2003–2007, Oct. 2010.
    [14] C.-S. Kuo, H.-C. Kuo, H.-R. Chuang, et al., “A high-isolation 60GHz CMOS transmit/receive switch,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2011, pp. 1–4.
    [15] C.-C. Chou, S.-C. Huang, W.-C. Lai, H.-C. Kuo and H.-R. Chuang, “Design of W-band high-isolation T/R switch,” in Proc. Eur. Microw. Conf., Sep. 2015, pp. 1084–1087.
    [16] S.-F. Chao, H. Wang, C.-Y. Su, and J. G. J. Chern, “A 50 to 94-GHz CMOS SPDT switch using traveling-wave concept,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 130–132, 2007.
    [17] R.-B. Lai, J.-J. Kuo, and H. Wang, “A 60–110 GHz transmission-line integrated SPDT switch in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 85–87, Feb. 2010.
    [18] F. Meng, K. Ma, K. S. Yeo, “A 130-to-180GHz 0.0035 mm2 SPDT switch with 3.3dB loss and 23.7dB isolation in 65nm bulk CMOS” IEEE ISSCC Dig. Tech. Papers, pp. 34–35, Feb. 2015.
    [19] M. Uzunkol and G. M. Rebeiz, “140–220 GHz SPST and SPDT switches in 45 nm CMOS SOI,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 412–414, Aug. 2012.
    [20] J.-H. Wang, H.-H. Hsieh, and L.-H. Lu, “A 5.2-GHz CMOS T/R switch for ultra-low-voltage operations,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1774–1782, Aug. 2008.
    [21] C. Byeon and C. S. Park, “Design and analysis of the millimeter-wave SPDT switch for TDD applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2858–2864, Aug. 2013.
    [22] Y. Jin and C. Nguyen, “Ultra-compact high-linearity high-power fully integrated dc–20-GHz 0.18-μm CMOS T/R switch,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 1, pp. 30–36, Jan. 2007.
    [23] T. Ohnakado, S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs),” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 577–584, 2004.
    [24] H. Xu and K. K. O, “A 31.3-dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2528–2534, Nov. 2007.
    [25] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
    [26] L.-C. Hsu, Y.-L. Wu, J.-Y. Zou, H. N. Chu, and T.-G. Ma, “Periodic synthesized transmission lines with 2-D routing capability and its applications to power divider and couplers using integrated passive device process,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 493–501, Feb. 2016.
    [27] 趙世峰,毫米波切換器與帶通濾波整合切換器之設計,國立臺灣大學電信工程學研究所博士論文,民國九十六年。
    [28] H.-Y. Chang and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 82–84, Feb. 2010.
    [29] R. L. Schmid, P. Song, C. T. Coen, A. C. Ulusoy, and J. D. Cressler, “On the analysis and design of low-loss single-pole double-throw W-band switches utilizing saturated SiGe HBTs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2755–2767, Nov. 2014.
    [30] R. L. Schmid, A. C. Ulusoy, P. Song, and J. D. Cressler, “A 94 GHz, 1.4 dB insertion loss single-pole double-throw switch using reverse-saturated SiGe HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 1, pp. 56–58, Jan. 2014.
    [31] C. Ulusoy, et al., “A low-loss and high isolation D-Band SPDT switch utilizing deep-saturated SiGe HBTs ,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 400-402, Jun. 2014.
    [32] X.-L. Tang, E. Pistono, P. Ferrari, and J. M. Fournier, “A traveling-wave CMOS SPDT using slow-wave transmission lines for millimeter wave application,” IEEE Electron Devices Lett., vol. 34, no. 9, pp.1094–1096, Aug. 2013
    [33] W.-C. Lai and H.-R. Chuang, “A 40-110 GHz high-isolation CMOS traveling-wave T/R switch by using parallel inductor,” in IEEE Int. Microw. Symp. Dig., May 2015, pp1–3.
    [34] 何姿誼,無線接收器之自動增益控制設計與實作,國立臺灣大學電機資訊學院電子工程學研究所碩士論文,民國一百年。
    [35] 謝明良,射頻功率放大器之發射功率偵測,國立中正大學電機工程研究所碩士論文,民國九十八年。
    [36] U. R. Pfeiffer and D. Goren, “A 20 dBm fully integrated 60 GHz SiGe power amplifier with automatic level control,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1455–1463, Jul. 2007.
    [37] F.D. Canales and M. Abbasi, “A 75-90 GHz high linearity MMIC power amplifier with integrated output detector,” in IEEE Int. Microw. Symp. Dig., June 2013, pp. 1–4.
    [38] M. Uzunkol, “Low noise millimeter-wave and THz receivers, imaging arrays, switches in advanced CMOS and SiGe processes,” Ph.D. dissertation, University of California, San Diego, California, 2013.
    [39] P. Song, R. L. Schmid, A. C. Ulusoy, and J. D. Cressler, “A high-power, low-loss W-band SPDT switch using SiGe PIN diodes,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2014, pp. 195–198.
    [40] Y. Zhou and M. Y. W. Chia, “A low-power ultra-wideband CMOS true RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1052–1058, May 2008.
    [41] Y.-C. Huang, H.-H. Hsieh, and L.-H. Lu, “A build-in self-test technique for RF low-noise amplifiers,” IEEE Trans. Microw. Theory. Techn., vol. 56, no. 5, pp. 1035–1042, May 2008.
    [42] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 670–678, Mar. 2012.
    [43] Y.-J. Chuang et al, “A Wideband InP DHBT True Logarithmic Amplifier,” IEEE Trans. Microw. Theory Techn., vol. 54, pp. 3843–3847, Nov 2006.
    [44] J.-W. Wu, K.-C. Hsu, W.-J. Lai, C.-H. To, S.-W. Chen, C.-W. Tang, and Y.-Z. Juang, “A linear-in-dB radio-frequency power detector,” in IEEE Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4.
    [45] 謝易耕,射頻功率偵測器的應用,國立交通大學電子工程學系電子研究所碩士論文,民國九十七年。
    [46] I. Kim and Y. Kwon, “A broadband logarithmic power detector in 0.13-μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 498–500, 2013.
    [47] R. Levinger et al., “An E-band 40 dB dynamic range multi-tanh power detector in 0.13μm SiGe technology,” in Proc. Eur. Microw. Integr. Circuit Conf., Oct. 6–7, 2014, pp. 170–173.
    [48] A. Serhan, E. Lauga-Larroze, and J.-M. Fournier, “A 700 MHz output bandwidth, 30 dB dynamic range, common-base mm-wave power detector,” in IEEE Int. Microw. Symp. Dig., May 2015, pp1-3.
    [49] 黃彥誌,適用於射頻前端之內建自我測試電路,國立臺灣大學電子工程學研究所碩士論文,民國96年。
    [50] J. Choi, et al. “Wide dynamic-range CMOS RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 868–880, Mar. 2016.
    [51] F. Ellinger et al., “Integrated adjustable phase shifters,” IEEE Microw. Mag., vol. 11, pp. 97–108, 2010.
    [52] A. Serhan, E. Lauga-Larroze, and J.-M. Fournier, “Common-base/common-gate millimeter-wave power detectors,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4483–4491, Dec. 2015.
    [53] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.
    [54] K. Townsend and J. Haslett, “A wideband power detection system optimized for the UWB spectrum,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 371–381, Feb. 2009.
    [55] J. Wang, Y. Zheng, F. Yang, F. Tian, and H. Liao, “A wide band CMOS radio frequency RMS power detector with 42-dB dynamic range,” in Proc. IEEE Int. Symp. Circuits Systems., pp.1678–1681, May 2015.
    [56] S. N. Rubin “A wide-band UHF logarithmic amplifier,” IEEE J. Solid-State Circuits, vol. sc-1, no. 2, pp. 74–81, Dec. 1966.
    [57] W. L. Barber and E. R. Brown, “A true logarithmic amplifier for radar IF applications,” IEEE J. Solid-State Circuits, vol. SC-15, no. 3, pp. 291–295, Jun. 1980.
    [58] H.-Y. M. Pan and L. E. Larson, “A linear-in-dB SiGe HBT wideband high dynamic range RF envelope detector,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2010, pp. 267–270.
    [59] S. Daneshgar et al., “A DC-100 GHz bandwidth and 20.5 dB gain limiting amplifier in 0.25μm InP DHBT technology,” in IEEE Compound Semiconduct. Integr. Circuit Symp., Oct. 2013, pp. 1–4.
    [60] X. J. Li and Y. P. Zhang, “Flipping the CMOS switch,” IEEE Microwave Mag., vol. 11, no. 1, pp. 86–96, Jan. 2010.
    [61] J. He, Y.-Z. Xiong, and Y. P. Zhang, “Analysis and design of 60-GHz SPDT switch in 130-nm CMOS,,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3113–3119, Oct. 2012.
    [62] G.-Y. Chen, H.-Y. Chang, C.-Y. Chan, et al., “Cold-mode characteristics of 90 nm CMOS device with negative body bias and highly linear millimeter-wave switch applications,” in Proc. Asia-Pacific Microw. Conf., Dec. 2010, pp. 554–557.
    [63] H.-C. Kuo, C.-C. Chou, C.-C. Lin, C.-H. Yu, and H.-R. Chuang, “A 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., May 2015, pp. 35–38.
    [64] J.-D. Jin and S. S. H. Hsu, “A 0.18- m CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 440–445, Feb. 2008.
    [65] R.L. Schmid, P. Song, C.T. Coen, A. C. Ulusoy, and J.D. Cressler, “A W-band integrated silicon-germanium loop-back and front-end transmit-receive switch for built-in-self-test,” in IEEE Int. Microw. Symp. Dig., May 2015, pp1–3.
    [66] 葉梅昭,互補式金氧半場效電晶體微波及毫米波切換器之研製,國立臺灣大學電信工程學研究所碩士論文,民國九十四年。
    [67] 蔡作敏,微波功率放大器及切換器之研究,國立臺灣大學電信工程學研究所博士論文,民國九十五年。
    [68] 王日新,低電壓低功率之CMOS射頻接收器前端電路,國立臺灣大學電機資訊學院電子工程學研究所碩士論文,民國九十七年。
    [69] 曾暐哲,應用於微波頻段之低雜訊放大器及相移器之研究,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國九十七年。
    [70] 賴瑞彬,毫米波多埠切換器與功率放大器之研製,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國九十八年。
    [71] 謝家瑜,60-GHz 緩衝放大器與低相位變異可變增益放大器之研製,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國九十九年。
    [72] 簡瑞德,60 GHz互補式金氧半導體自動功率控制功率放大器研製,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國九十九年。
    [73] 賈卜士,應用於內建自我測試機制之V頻段互補式金氧半導體低雜訊放大器與寬頻射頻功率偵測器之研製,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國一百年。
    [74] 郭迺中,V頻段主動倍頻器與微波功率放大器效率與線性度改良及滯後現象之研究,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國一百年。
    [75] 陳冠維,K頻段互補式金氧半導體功率放大器之預先失真技術研究,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國一百零一年。
    [76] 包克豪,應用於超寬頻無線射頻收發機之CMOS分散式主動射頻積體電路之設計研究,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
    [77] 沈宏軒,24 與60 GHz CMOS 收發開關及3-10 GHz超寬頻低雜訊放大器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
    [78] 歐振宇,24-GHz 與60-GHz CMOS 收發開關與次諧波及摺疊混頻器毫米波射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
    [79] 郭奇昕,毫米波CMOS 高隔離度射頻收發開關及功率放大器研製,國立功大學電腦與通信工程研究所碩士論文,民國一百零一年。
    [80] 呂知穎,毫米波CMOS 低變化插入損耗相移器與非對稱型射頻收發開關之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
    [81] 林建志,毫米波功率結合技術之CMOS功率放大器及60-GHz CMOS次諧波射頻收發機前端之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零三年。
    [82] 黃詩喬,毫米波CMOS 低插入損耗變化之相移器及W- / K-band 射頻收發開關,國立成功大學電腦與通信工程研究所碩士論文,民國一百零三年。
    [83] 余俊翰,毫米波CMOS 寬頻可變增益低雜訊放大器及使用前置失真線性器之94-GHz CMOS 功率放大器,國立成功大學電腦與通信工程研究所碩士論文,民國一百零三年。
    [84] 詹清硯,微波及毫米波行進波切換器之研製,國立中央大學電機工程研究所碩士論文,民國九十八年。
    [85] 林昱齊,分佈式類比相位偏移器之設計與製作,國立中央大學電機工程研究所碩士論文,民國一百年。
    [86] 王志華,高功率CMOS 微波開關電路設計,國立中央大學電機工程研究所碩士論文,民國一百年。
    [87] 洪嘉盈,應用於電磁咽喉微振動感測技術之功率檢測器及接收訊號分析,國立中正大學電機工程研究所碩士論文,民國九十五年。
    [88] 張舜乾,毫米波CMOS濾波式切換器,國立中正大學電機工程研究所博士論文,民國一百零一年。

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE