簡易檢索 / 詳目顯示

研究生: 江朝文
Chiang, Chao-Wen
論文名稱: 高速微米精度磁浮系統之整頻順滑控制
Frequency-Shaping Sliding Mode Control of High-Speed Micro-Meter-Precision Active Bearing Systems
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 54
中文關鍵詞: 頻率整型順滑控制磁浮軸承
外文關鍵詞: Frequency-Shaping, Sliding Mode Control, Magnetic Bearing
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計高速五軸磁浮軸承系統的頻率整型順滑控制器設計。由電磁致動器之動態,轉軸之匹配推導整體磁浮軸承系統之運動方程式作為控制器設計之依據。基於線性二次式、最佳投影、頻率整型等原理,從頻域的觀點設計頻率整型順滑控制器,對主軸高階模態加以抑制,以避免激勵高階響應,且能保證系統參數在有界的各種參數不確定和捨去建模誤差下,系統仍能維持穩定。由於磁浮軸承為隨轉速時變系統,故本文應用Kharitonov’s Theorem判斷回授系統相對於轉速變動之穩定度,並分析所設計的等效控制力對轉速變動之強健穩定性。本文所提出之頻率整型順滑控制策略,除推導與證明外,所有電腦模擬之結果均展現設計之控制器具有優越的性能,足以於短時間內節制主軸的偏移於微米範圍以內。

    The Frequency-Shaping Sliding Mode Control (FSSMC) for high-speed active magnetic bearing (AMB) is synthesized. The controller is designed on the basis of the equation of motion of the magnetic bearing system, which composed the dynamics of the electrical sub-system and mechanical sub-system. By linear quadratic, optimal projection and frequency shaping methodology, FSSMC is proved to be asymptotica-lly stable as long as the uncertainties of system parameters are bounded. The main purpose of frequency-shaping design is to avoid excitation of high-order dynamics of the rotating spindle so that the effect of a low-pass filter is presented. For the AMB is Linear Parameter Varying (LPV) system, the Kharitonov’s Theorem is employed to examine the stability under variation of rotational speed. It is proved that the equivalent control for the speed-dependent AMB system is robust. The simulation results show that FSSMC performs rapid response to regulate the deviation of high-speed spindle within 1 um .

    第一章 緒論……………………………………………………………… 1 第二章 主動式五軸磁浮軸承之數學模型………………………………… 7 2.1 電磁致動器之動態分析………………………………………8 2.2 磁浮轉軸系統之運動方程式…………………………………11 2.3 結論……………………………………………………………17 第三章 順滑控制器設計………………………………………………… 20 3.1 順滑控制………………………………………………………21 3.2 LQ設計與頻率整型………………………………………… 28 3.3 線性運算子與順滑平面………………………………………30 3.4 頻率整型與順滑控制…………………………………………32 3.5 結論……………………………………………………………37 第四章 整頻順滑控制系統模擬與分析………………………………… 38 4.1 頻率整型順滑控制之模擬與分析……………………………38 4.2 Kharitonov’s Theorem穩定度分析…………………………42 第五章 結論與展望……………………………………………………… 48 5.1 結論……………………………………………………………48 5.2 未來發展與建議………………………………………………48 參考文獻…………………………………………………………………… 50 自述………………………………………………………………………… 54

    [1]黃忠良,磁懸浮與磁力軸承,復漢出版社,1994。
    [2]H. Masujiro, I. Yoshio, M. Junichi, “Development of Digitally Controlled Magnetic Bearing”, Nippon Kikai Gakkai Ronbunshu, Vol. 51, No. 465, 1095-1100, 1985.
    [3] P. E. Allaire, R. R. Humphris, R. D. Kelm, “Dynamics of a Flexible Rotor in Magnetic Bearings”, NASA Conference Publication, 419-430, 1986.
    [4] M. Takeshi, H. Toshiro, “Design of the Control System of Totally Active Magnetic Bearings: Structures of the Optimal Regulator”, International Symposium on Design and Synthesis, 534-539, 1984.
    [5]M. H. Chen, “Magnetic Bearings and Flexible Rotor Dynamics”, Tribology Transactions, Vol. 32, No. 1, 9-15, 1989.
    [6]A. C. Lee, Y.-P. Shin, “Identification of the Unbalance Distribution and Dynamic Characteristics of Bearings in Flexible Rotors”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol, 210, No. 5, 409-428, 1996.
    [7]S. Ohseop, H.-S. Kang, L. Liviu, “Optimal Control of Rotors in Anisotropic Magnetic Bearings”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3984, 174-185, 2000.
    [8]N. Kenzo, I. Takayuki, “ μ Synthesis of Flexible Rotor-Magnetic Bearing Systems”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 5, 503-512, 1996.
    [9]I. Takakazu, S. Takashi, T. Nobuyoshi, “Active Vibration Control of Flexible Rotor using Electromagnetic Damper”, IECON Proceedings (Industrial Electronics Conference), Vol. 1, 437-442, 1991.
    [10]J. Y. Hung, “Magnetic Bearing Control using Fuzzy Logic”, Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), Vol. 3, Manufacturing Systems Development and Applications Department, 2210-2215, 1993.
    [11]L. Jean, L. Jacques, P. J. Christophe, “Nonlinear Approach to the Control of Magnetic Bearings”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 5, 524-544, 1996.
    [12]A. M. Mohamed, F. P. Emad, “Conical Magnetic Bearings with Radial and Thrust Control”, Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, Vol. 1, 554-561, 1989.
    [13]S. Fukata, S. Matsuoka, “Control System and Dynamics of Cone Shaped Magnetic Bearings Actuated by Five Electromagnets”, Fourth International Sympoium on Magnetic Bearings, 245-250, 1994.
    [14]S.-J. Huang, L.-C. Lin, “Fuzzy Modeling and Control for Conical Magnetic Bearings using Linear Matrix Inequality”, Journal of Intelligent and Robotic Systems: Theory and Applications, Vol. 37, No. 2, 209-232, 2003.
    [15]N. G. Albritton, J. Y. Hung, “Observers for Sensorless Control of Industrial Magnetic Bearings”, IECON Proceedings (Industrial Electronics Conference), Vol. 2, 973-978, 1995.
    [16]K. Jiro, S. Tadahiko, L. Lichuan, S. Akira, “Miniaturization of a One-Axis-Controlled Magnetic Bearing”, Precision Engineering, Vol. 29, No. 2, 208-218, 2005.
    [17]J.-H. Kyung, C.-W. Lee, “Controller Design for a Magnetically Suspended Milling Spindle Based on Chatter Stability Analysis”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 46, No. 2, 416-422, 2003.
    [18]M. Spirig, J. Schmied, P. Jenckel, U. Kanne, “Three Practical Examples of Magnetic Bearing Control Design using a Modern Tool”, Journal of Engineering for Gas Turbines and Power, Vol. 124, No. 4, 1025-1031, 2002.
    [19]C.K. Kao, A. Sinha, “Coupled Model Sliding Control of Vibration in Flexible Structure”, Journal of Guidance, Vol.15, No.1, 65-72,1992.
    [20]Y.-S. Lu, “Pole-Clustering Using Sliding-Mode Techniques for Moter Drives with Bounded Control”, JSME International Journal Series C, Vol. 46, No. 4, 1473-1482, 2003.
    [21] K. Pushkin, T. Masayoshi, “Chattering Reduction and Error Convergence in the Sliding-Mode Control of a Class of Nonlinear Systems”, IEEE Transactions on Automatic Control, Vol. 41, No. 7, 1063-1068, 1996.
    [22] A. Hasan, Y. Oguz, “Fuzzy Sliding-Mode Control of Structures”, Engineering Structures, Vol. 27, No. 2, 277-284, 2005.
    [23]N. K. Gupta, “Frequency-shaped Cost Functional: Extension of Linear-Quadratic-Gaussian Design Methods”, Journal of Guidance and Control, Vol. 3, 529-535, 1980.
    [24]W. C. Wu, T. S. Liu, “Frequency-Shaped Sliding Mode Control for Flying Height of Pickup Head in Near-Field Optical Disk Drives”, IEEE Transactions on Magnetics , Vol. 14, No. 2, 1061-1063, 2005.
    [25]A. Y. Lee, M. A. Salman, “On the Design of Active Suspension Incorporation Human Sensitivity to Vibration”, Optimal Control Applications and Methods, Vol. 10, 189-195, 1989.
    [26]K. Nomami, H. Nishimura, H. Tina, “ Control-Based Frequency-Shaped Sliding Mode Control for Flexible Structures”, JSME International Journal Series C, Vol. 39, No. 3, 493-501, 1996.
    [27]S.-L. Chen, C.-T. Hsu, “Optimal Design of a Three-Pole Active Magnetic Bearing”, IEEE Transactions on magnetics, Vol. 38, No. 5, 3458-3466, 2002.
    [28]Y. H. Fan, A. C. Lee, “Design of a Permanent / Electromagnetic Magnetic Bearing-Controlled Rotor System”, Journal of the Franklin Institute, Vol. 334B, No. 3, 337-356, 1997.
    [29]C. K. Kao, A. Sinha, “Coupled Model Sliding Mode Control of Vibration in Flexible Structures”, Journal of Guidance, Vol. 15, No. 1, 65-72, 1992.
    [30]K. K. D. Young, P. V. Kokotivic, V. I. Utkin, “A Singular Perturbation Analysis of High-Gain Feedback Systems”, IEEE Transactions on Automatic Control, Vol. AC-22, No. 6, 931-938, 1977.
    [31]A. G. Luk’yanov, V. I. Utkin, ”Method of Reducing Equations for Dynamic Systems to a Regular Form”, Automaton and Remote Control, Vol. 42, No. 4, 413-420, 1981.
    [32]V. I. Utkin, K. D. Yang, “Method for Constructing Discontinuity Planes in Multidimensional Variable Structure Systems, Automation and Remote Control, Vol. 39, No. 10, 1466-1470, 1978.
    [33]N. K. Sinha, P. Rozsa, “Some Canonical Forms for Linear Multivariable Systems”, International Journal of Control, Vol. 23, No. 6, 865-883, 1976.
    [34]J. J. E. Slotine, W. Li, “Applied Nonlinear Control”, Prentice Hall, 1991.
    [35]H. Asada, J. J. Slotine, “Robot Analysis and Control, Wily, New York, 1986.
    [36]N. K. Gupta, “Frequency-shaped Cost Functional: Extension of Linear-Quadratic-Gaussian Design Methods”, Journal of Guidance and Control, Vol. 3, 529-535, 1980.
    [37]K. D. Young, U. Ozguner, “Frequency Shaping Compensator Design for Sliding Mode”, International Journal of Control, Vol. 57, No. 5, 1005-1019, 1993.
    [38]V. I. Utkin, K. D. Young, “Methods for Constructing Discontinuous Planes in Multidimensional Variable Structure Systems”, Automation and Remote Control, Vol. 31, 1466-1470, 1978.
    [39]A. J. Koshkouei, A. S. I. Zinober, “Robust Frequency Shaping Sliding Mode Control”, IEE Proceeding in Control Theory Application, Vol. 147, No. 3, 312-320, 2000.
    [40]J. T. Moura, R. G. Roy, N. Olgac, “Frequency-Shaping Sliding Modes: Analysis and Experiments, IEEE Transactions on Control Systems Technology, Vol. 5, No. 4, 394-401, 1997.
    [41]S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust Control: The Parametric Approach”, Prentice Hall, 1995.

    下載圖示 校內:立即公開
    校外:2005-07-27公開
    QR CODE