| 研究生: |
林煒倫 Lin, Wei-Lun |
|---|---|
| 論文名稱: |
導入快速初始反應機制於Kullback-Leibler資訊管制圖監控製程平均數以及變異數並分析其使用時機 Kullback-Leibler information control chart with fast initial response scheme for monitoring process mean and variance |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 快速初始反應 、Kullback-Leibler 資訊管制圖 、由後往前檢定 、平均連串長度 、同時監控製程平均數及變異數 |
| 外文關鍵詞: | fast initial response, Kullback-Leibler information, average run length, backward empirical sequential test |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在以往產品品質的好壞只有在消費者拿到最終產品後才能得知,隨著科技的發展以及觀念的演進,統計製程管制的觀念也漸漸地被各企業所重視,管制圖是常見的品質管制工具,透過管制圖的監控能夠追蹤產品的品質特徵,除了平均數的改變之外,變異數之變化也是影響產品品質的重要因素,常見的管制圖有累積和管制圖以及指數加權移動平均管制圖,雖然其在偵測小範圍之參數偏移時有不錯的效果,但缺點為需要參數設定,若實際偏移之情形與設定之參數不符合則會產生較差之績效。在不少產業有以下特性分別為製程多半呈現常態分佈微小的參數變動就易造成較大的影響以及若在製程一開始就發生變異且未及時處理則會產生嚴重之後果。基於上述,本研究將導入快速初始反應機制於Kullback-Leibler資訊管制圖監控製程平均數以及變異數之變化,其特點為不需要參數之設定,且可偵測大範圍之參數偏移,根據研究結果與賴芳妤(2022)之研究進行績效比較後發現在製程初期樣本資料有變異的可能時導入快速反應機制能夠得到較好的績效,然而製程實際情形會是甚麼我們無從得知,因此本研究透過成本模型來判斷使用此機制的時機,結果顯示當製程發出警訊時每次處理之成本較高時,除非製程一開始就發生偏移的機率較低,否則導入快速初始反應機制於KLI管制圖為較佳的選擇。
This study introduces a fast initial response mechanism into the Kullback-Leibler information control chart to monitor changes in process mean and variance. Its feature is that it does not require parameter settings and can detect a wide range of parameter shifts. The FIR feature is suitable for process that are prone to errors. The study results indicate that introducing FIR at the situation that the parameters change at the beginning of the process results in a smaller correct alarm cost and a larger false alarm cost compared to the situation that the parameters do not change at the beginning of the process. The model proposed in this study helps users determine the time for using this mechanism.
中文文獻:
張景富(民112)。導入快速初始反應機制至Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
賴芳妤(民111)。Kullback-Leibler資訊管制圖應用於同時監控製程平均數及變異數。國立成功大學工業與資訊管理研究所碩士論文。
黃昱霖(民112)。Kullback-Leibler資訊管制圖警訊後之診斷。國立成功大學工業與資訊管理研究所碩士論文。
英文文獻:
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions On Automatic Control, 19(6), 716-723.
Ali, S., & Riaz, M. (2020). On designing a new bayesian dispersion chart for process monitoring. Arabian Journal for Science and Engineering, 45(3), 2093-2111.
Cheng, S. W., & Li, G. Y. (1993). A single variables control chart. Statistica Sinica.
Chen, G., & Cheng, S. W. (1998). Max chart: combining x-bar chart and s chart. Statistica Sinica, 263-271.
Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86(2), 221-241.
Chen, G., Cheng, S. W., & Xie, H. (2001). Monitoring process mean and variability with one EWMA chart. Journal of Quality Technology, 33(2), 223-233.
Domangue, R., & Patch, S. C. (1991). Some omnibus exponentially weighted moving average statistical process monitoring schemes. Technometrics, 33(3), 299-313.
Hawkins, D. M., Qiu, P., & Kang, C. W. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355-366.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86.
Kupperman, M. (1957). Further applications of information theory to multivariate analysis and statistical inference. Annals of Mathematical Statistics.27(4), 1148-1186
Lucas, J. M., Crosier, R. B. (1982).Fast initial response for CUSUM quality-control.Technometrics. 42(1), 102-107.
Lucas, J. M., Saccucci, M. S. (1990).Exponentially weighted moving average control.Technometrics. 32(1), 1-12.
Kanagawa, A., Arizono, I., & Ohta, H. (1997). Design of the (, s) control chart based on Kullback-Leibler information. In Frontiers in Statistical Quality Control (pp. 183-192)
Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115.
Pignatiello Jr, J. J., & Samuel, T. R. (2001). Estimation of the change point of a normal process mean in SPC applications. Journal of Quality technology, 33(1), 82-95.
Roberts,S.W. (2000). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97-101.
Reynolds Jr, M. R., Lou, J., Lee, J., & Wang, S. (2013). The design of GLR control charts for monitoring the process mean and variance. Journal of Quality Technology, 45(1), 34-60.
Wu, Z., & Tian, Y. (2005). Weighted-loss-function CUSUM chart for monitoring mean and variance of a production process. International Journal of Production Research, 43(14), 3027-3044.
Xie, H. (1999). Contributions to qualimetry [PhD thesis]. Winnipeg, Canada:University of Manitoba.
校內:2026-08-01公開